logo

CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 341

Chapter 7: Mineral carbonation and industrial uses of carbon dioxide 329 as social disturbances. As for many other mining activities, the preventing and mitigating practices are relatively basic and well developed. potential liabilities. Land rehabilitation will involve the re- shaping of landform, because the volume of tailings will be larger than the mined rock. The main environmental concern regarding reclamation is major soil movements by erosion or landslides. This can be controlled by adequate vegetation cover and by covering the soil with protective mulch, by maintaining moisture in the soil, or by constructing windbreaks to protect the landform from exposure to high winds. 7.2.7 Life Cycle Assessment and costs Land clearing: The amount of material required to store CO2 involves extensive land clearing and the subsequent displacement of millions of tonnes of earth, rock and soil, increasing the potential for erosion, sedimentation and habitat loss in the area. Access roads would also lead to clearing of vegetation and soil. Standard practices recommended to minimize these impacts include storage of topsoil removed for use in future reclamation activities, use of existing tracks when constructing access roads and pipelines and use of drainage and sediment collection systems to catch runoff or divert surface water, minimizing erosion. At the current stage of development, mineral carbonation consumes additional energy and produces additional CO2 compared to other storage options. This is shown in Figure 7.1 and is why a Life Cycle Assessment of the specific process routes is particularly important. The potential of mineral carbonation depends on the trade-off between costs associated with the energy consuming steps (mining, pre-processing of the mineral ore, its subsequent disposal and mine reclamation) and benefits (the large potential capacity due to the vast availability of natural metal oxide bearing silicates and the permanence of CO2 storage). Air quality: Mining activities like blasting, drilling, earth moving and grading can generate dust and fine particulate matter that affect visibility and respiration and pollute local streams and vegetation. Dust prevention measures are widely applied at mining operations today, but if not properly controlled, dust can threaten human respiratory health. This is particularly important in serpentine mining because serpentine often contains chrysotile, a natural form of asbestos. Even though chrysotile is not as hazardous as amphibole asbestos (tremolite, actinolite) (Hume and Rimstidt, 1992), the presence of chrysotile requires covering of exposed veins and monitoring of air quality (Nichols, 2000). On the other hand, mineral carbonation products are asbestos free, as the reaction destroys chrysotile, which reacts faster than other serpentines, even if conversion of the starting material is not complete. This makes mineral carbonation a potentially effective method for the remediation of asbestos in serpentine tailing (O’Connor et al., 2000). The resulting mineral carbonates are inert, but large volumes of powders would also have to be controlled, for example by cementing them together to avoid contamination of soil and vegetation, as well as habitat destruction. A life cycle analysis of the mining, size reduction process, waste disposal and site restoration calculated additional annual CO2 emissions of 0.05 tCO2/tCO2 stored (Newall et al., 2000). This included grinding of the rock to particle sizes less than 100 microns; a ratio of 2.6 tonnes of serpentine per tonne of CO2 was assumed. The cost was assessed to be about 14 US$/tCO2 stored; the capital cost being about 20% of the total. All cost estimates were based on OECD Western labour costs and regulations. The conversion factor from electrical energy to CO2 emissions was 0.83 tCO2/MWh electricity. Costs were calculated on the basis of an electricity price of US$ 0.05 kWh–1 electricity. Results from other studies were converted using these values (Newall et al., 2000). Other estimates of these costs are between 6 and 10 US$/tCO2 stored, with 2% additional emissions (Lackner et al., 1997). Tailings: Tailings consist of finely ground particles, including ground-up ore and process byproducts. Tailings management systems should be designed and implemented from the earliest stages of the project. Usually tailings are stored in tailings impoundments designed to hold tailings behind earth- fill dams (Newall et al., 2000). Other control measures depend on whether tailings are dry or wet, on particle size and chemical reactivity. As far as the scale of mining and disposal is concerned – about 1.6 to 3.7 tonnes of silicate and 2.6 to 4.7 tonnes of disposable materials per tonne of CO2 fixed in carbonates, as reported in Section 7.2.4 – this is of course a major operation. When considering that one tonne of carbon dioxide corresponds to 0.27 tonnes of carbon only in theory, but in practice to about 2 tonnes of raw mineral due to the overburden, it follows that mineral carbonation to store the CO2 produced by burning coal would require the installation of a mining industry of a scale comparable to the coal industry itself. Such large mining operations are significant, but placing them in the context of the operations needed for the use of fossil fuels and geological or ocean storage, the volumes are comparable. Leaching of metals: Although the low acidity of the resulting byproducts reduces the possibility of leaching, certainty about leaching can only be obtained by conducting tests. If necessary, a lining system would prevent ground water contamination. Leaching containment is also possible without lining where underlying rock has been shown to be impermeable. Reclamation: To minimize water contamination, restore wildlife habitat and ecosystem health and improve the aesthetics of the landscape, a comprehensive reclamation programme has to be designed during the planning phase of the mining project and be implemented concurrently throughout operations. Concurrent incorporation of reclamation with the mining of the site reduces waste early, prevents clean-up costs and decreases The energy requirements and the costs of the carbonation reaction are very much process dependent and more difficult to estimate, due to scarcity of data. The most detailed study has been carried out for the process where the silicates are dissolved in a magnesium chloride melt (Newall et al., 2000). An overall cost (including the operations mentioned in the

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

carbon-dioxide-capture-and-storage-341

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP