PDF Publication Title:
Text from PDF Page: 353
Chapter 8: Cost and economic potential 341 ExECutivE SummARy The major components of a carbon dioxide capture and storage (CCS) system include capture (separation plus compression), transport, and storage (including measurement, monitoring and verification). In one form or another, these components are commercially available. However, there is relatively little commercial experience with configuring all of these components into fully integrated CCS systems at the kinds of scales which would likely characterize their future deployment. The literature reports a fairly wide range of costs for employing CCS systems with fossil-fired power production and various industrial processes. The range spanned by these cost estimates is driven primarily by site-specific considerations such as the technology characteristics of the power plant or industrial facility, the specific characteristics of the storage site, and the required transportation distance of carbon dioxide (CO2). In addition, estimates of the future performance of components of the capture, transport, storage, measurement and monitoring systems are uncertain. The literature reflects a widely held belief that the cost of building and operating CO2 capture systems will fall over time as a result of technological advances. The cost of employing a full CCS system for electricity generation from a fossil-fired power plant is dominated by the cost of capture. The application of capture technology would add about 1.8 to 3.4 US$ct kWh–1 to the cost of electricity from a pulverized coal power plant, 0.9 to 2.2 US$ct kWh–1 to the cost for electricity from an integrated gasification combined cycle coal power plant, and 1.2 to 2.4 US$ct kWh–1 from a natural- gas combined-cycle power plant. Transport and storage costs would add between –1 and 1 US$ct kWh–1 to this range for coal plants, and about half as much for gas plants. The negative costs are associated with assumed offsetting revenues from CO2 storage in enhanced oil recovery (EOR) or enhanced coal bed methane (ECBM) projects. Typical costs for transportation and geological storage from coal plants would range from 0.05–0.6 US$ct kWh–1. CCS technologies can also be applied to other industrial processes, such as hydrogen (H2) production. In some of these non-power applications, the cost of capture is lower than for capture from fossil-fired power plants, but the concentrations and partial pressures of CO2 in the flue gases from these sources vary widely, as do the costs. In addition to fossil-based energy conversion processes, CCS may be applied to biomass-fed energy systems to create useful energy (electricity or transportation fuels). The product cost of these systems is very sensitive to the potential price of the carbon permit and the associated credits obtained with systems resulting in negative emissions. These systems can be fuelled solely by biomass, or biomass can be co-fired in conventional coal-burning plants, in which case the quantity is normally limited to about 10–15% of the energy input. Energy and economic models are used to study future scenarios for CCS deployment and costs. These models indicate that CCS systems are unlikely to be deployed on a large scale in the absence of an explicit policy that substantially limits greenhouse gas emissions to the atmosphere. The literature and current industrial experience indicate that, in the absence of measures to limit CO2 emissions, there are only small, niche opportunities for the deployment of CCS technologies. These early opportunities for CCS deployment – that are likely to involve CO2 captured from high-purity, low-cost sources and used for a value-added application such as EOR or ECBM production – could provide valuable early experience with CCS deployment, and create parts of the infrastructure and knowledge base needed for the future large-scale deployment of CCS systems. With greenhouse gas emission limits imposed, many integrated assessment analyses indicate that CCS systems will be competitive with other large-scale mitigation options, such as nuclear power and renewable energy technologies. Most energy and economic modelling done to date suggests that the deployment of CCS systems starts to be significant when carbon prices begin to reach approximately 25–30 US$/tCO2 (90–110 US$/tC). They foresee the large-scale deployment of CCS systems within a few decades from the start of any significant regime for mitigating global warming. The literature indicates that deployment of CCS systems will increase in line with the stringency of the modelled emission reduction regime. Least-cost CO2 concentration stabilization scenarios, that also take into account the economic efficiency of the system, indicate that emissions mitigation becomes progressively more stringent over time. Most analyses indicate that, notwithstanding significant penetration of CCS systems by 2050, the majority of CCS deployment will occur in the second half of this century. They also indicate that early CCS deployment will be in the industrialized nations, with deployment eventually spreading worldwide. While different scenarios vary the quantitative mix of technologies needed to meet the modelled emissions constraint, the literature consensus is that CCS could be an important component of a broad portfolio of energy technologies and emission reduction approaches. In addition, CCS technologies are compatible with the deployment of other potentially important long-term greenhouse gas mitigation technologies such as H2 production from biomass and fossil fuels. Published estimates (for CO2 stabilization scenarios between 450–750 ppmv) of the global cumulative amount of CO2 that might be stored over the course of this century in the ocean and various geological formations span a wide range: from very small contributions to thousands of gigatonnes of CO2. This wide range can largely be explained by the uncertainty of long-term, socio-economic, demographic and technological change, the main drivers of future CO2 emissions. However, it is important to note that the majority of stabilization scenarios from 450–750 ppmv tend to cluster in the range of 220–2200 GtCO2 (60–600 GtC). This demand for CO2 storage appears to be within global estimates of total CO2 storage capacity. The actual use of CCS is likely to be lower than the estimates for economic potential indicated by these energy and economic models, as there are other barriers to technology development not adequately accounted for in these modelling frameworks. Examples include concerns about environmental impact, the lackPDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |