CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 356

344 IPCC Special Report on Carbon dioxide Capture and Storage Studies indicate that, in most cases, IGCC plants are slightly higher in cost without capture and slightly lower in cost with capture than similarly sized PC plants fitted with a CCS system. On average, NGCC systems have a lower COE than both types of new coal-based plants with or without capture for baseload operation. However, the COE for each of these systems can vary markedly due to regional variations in fuel cost, plant utilization, and a host of other parameters. NGCC costs are especially sensitive to the price of natural gas, which has risen significantly in recent years. So comparisons of alternative power system costs require a particular context to be meaningful. economies of scale, bringing down costs of the CCS systems to broadly similar levels as those in coal plants. However, there is too little experience with large-scale biomass plants as yet, so that their feasibility has still not been proven and their costs are difficult to estimate. For existing, combustion-based, power plants, CO2 capture can be accomplished by retrofitting an amine scrubber to the existing plant. However, a limited number of studies indicate that the post-combustion retrofit option is more cost-effective when accompanied by a major rebuild of the boiler and turbine to increase the efficiency and output of the existing plant by converting it to a supercritical unit. For some plants, similar benefits can be achieved by repowering with an IGCC system that includes CO2 capture technology. The feasibility and cost of any of these options is highly dependent on site-specific circumstances, including the size, age and type of unit, and the availability of space for accommodating a CO2 capture system. There has not yet been any systematic comparison of the feasibility and cost of alternative retrofit and repowering options for existing plants, as well as the potential for more cost-effective options employing advanced technology such as oxyfuel combustion. CCS technologies can also be applied to other industrial processes. Since these other industrial processes produce off-gases that are very diverse in terms of pressure and CO2 concentration, the costs range very widely. In some of these non-power applications where a relatively pure CO2 stream is produced as a by-product of the process (e.g., natural gas processing, ammonia production), the cost of capture is significantly lower than capture from fossil-fuel-fired power plants. In other processes like cement or steel production, capture costs are similar to, or even higher than, capture from fossil-fuel-fired power plants. Table 8.1 also illustrates the cost of CO2 capture in the production of H2, a commodity used extensively today for fuels and chemical production, but also widely viewed as a potential energy carrier for future energy systems. Here, the cost of CO2 capture is mainly due to the cost of CO2 compression, since separation of CO2 is already carried out as part of the H2 production process. Recent studies indicate that the cost of CO2 capture for current processes adds approximately 5 to 30 per cent to the cost of the H2 product. 8.2.2 Transport2 In addition to fossil-based energy conversion processes, CO2 could also be captured in power plants fuelled with biomass. At present, biomass plants are small in scale (<100 MWe). Hence, the resulting costs of capturing CO2 are relatively high compared to fossil alternatives. For example, the capturing of 0.19 MtCO2 yr-1 in a 24 MWe biomass IGCC plant is estimated to be about 82 US$/tCO2 (300 US$/tC), corresponding to an increase of the electricity costs due to capture of about 80 US$ MWh–1 (Audus and Freund, 2004). Similarly, CO2 could be captured in biomass-fuelled H2 plants. The cost is reported to be between 22 and 25 US$/tCO2 avoided (80–92 US$/tC) in a plant producing 1 million Nm3 d–1 of H2 (Makihira et al., 2003). This corresponds to an increase in the H2 product costs of about 2.7 US$ GJ–1 (i.e., 20% of the H2 costs without CCS). The competitiveness of biomass CCS systems is very sensitive to the value of CO2 emission reductions, and the associated credits obtained with systems resulting in negative emissions. Moreover, significantly larger biomass plants could benefit from The three major cost elements for pipelines are construction costs (e.g., material, labour, possible booster station), operation and maintenance costs (e.g., monitoring, maintenance, possible energy costs) and other costs (e.g., design, insurance, fees, right-of-way). Special land conditions, like heavily populated areas, protected areas such as national parks, or crossing major waterways, may have significant cost impacts. Offshore pipelines are about 40% to 70% more costly than onshore pipes of the same size. Pipeline construction is considered to be a mature technology and the literature does not foresee many cost reductions. New or improved technologies for CO2 capture, combined with advanced power systems and industrial process designs, can significantly reduce the cost of CO2 capture in the future. While there is considerable uncertainty about the magnitude and timing of future cost reductions, studies suggest that improvements to current commercial technologies could lower CO2 capture costs by at least 20–30%, while new technologies currently under development may allow for more substantial cost reductions in the future. Previous experience indicates that the realization of cost reductions in the future requires sustained R&D in conjunction with the deployment and adoption of commercial technologies. The most common and usually the most economical method to transport large amounts of CO2 is through pipelines. A cost- competitive transport option for longer distances at sea might be the use of large tankers. Figure 8.1 shows the transport costs for ‘normal’ terrain conditions. Note that economies of scale dramatically reduce the cost, but that transportation in mountainous or densely populated areas could increase cost. Tankers could also be used for transport. Here, the main cost elements are the tankers themselves (or charter costs), loading and unloading facilities, intermediate storage facilities, harbour 2 This section is based on material presented in Section 4.6. The reader is referred to that section for a more detailed analysis and literature references.

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)