SpaceX and the Quest

PDF Publication Title:

SpaceX and the Quest ( spacex-and-quest )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 077

second stage, which would ignite up in the air and reach 17,000 miles per hour. But, while going through the pre-launch checks, the engineers detected a major problem: a valve on a liquid oxygen tank would not close, and the LOX was boiling off into the air at 500 gallons per hour. SpaceX scrambled to fix the issue but lost too much of its fuel to launch before the window closed. With that mission aborted, SpaceX ordered major LOX reinforcements from Hawaii and prepared for another attempt in mid-December. High winds, faulty valves, and other errors thwarted that launch attempt. Before another attempt could be made, SpaceX discovered on a Saturday night that the rocket’s power distribution systems had started malfunctioning and would need new capacitors. On Sunday morning, the rocket was lowered and split into its two stages so that a technician could slide in and remove the electrical boards. Someone found an electronics supplier that was open on Sunday in Minnesota, and off a SpaceX employee flew to get some fresh capacitors. By Monday he was in California and testing the parts at SpaceX’s headquarters to make sure they passed various heat and vibration checks, then on a plane again back to the islands. In under eighty hours, the electronics had been returned in working order and installed in the rocket. The dash to the United States and back showed that SpaceX’s thirty-person team had real pluck in the face of adversity and inspired everyone on the island. A traditional three-hundred-person-strong aerospace launch crew would never have tried to fix a rocket like that on the fly. But the energy, smarts, and resourcefulness of the SpaceX team still could not overcome their inexperience or the difficult conditions. More problems arose and blocked any thoughts of a launch. Finally, on March 24, 2006, it was all systems go. The Falcon 1 stood on its square launchpad and ignited. It soared into the sky, turning the island below it into a green spec amid a vast, blue expanse. In the control room, Musk paced as he watched the action, wearing shorts, flip-flops, and a T-shirt. Then, about twenty-five seconds in, it became clear that all was not well. A fire broke out above the Merlin engine and suddenly this machine that had been flying straight and true started to spin and then tumble uncontrollably back to Earth. The Falcon 1 ended up falling directly down onto the launch site. Most of the debris went into a reef 250 feet from the launchpad, and the satellite cargo smashed through SpaceX’s machine shop roof and landed more or less intact on the floor. Some of the engineers put on their snorkeling and scuba gear and recovered the pieces, fitting all of the rocket’s remnants into two refrigerator-sized crates. “It is perhaps worth noting that those launch companies that succeeded also took their lumps along the way,” Musk wrote in a postmortem. “A friend of mine wrote to remind me that only 5 of the first 9 Pegasus launches succeeded; 3 of 5 for Ariane; 9 of 20 for Atlas; 9 of 21 for Soyuz; and 9 of 18 for Proton. Having experienced firsthand how hard it is to reach orbit, I have a lot of respect for those that persevered to produce the vehicles that are mainstays of space launch today.” Musk closed the letter writing, “SpaceX is in this for the long haul and, come hell or high water, we are going to make this work.” Musk and other SpaceX executives blamed the crash on an unnamed technician. They said this technician had done some work on the rocket one day before the launch and failed to properly tighten a fitting on a fuel pipe, which caused the fitting to crack. The fitting in question was something basic —an aluminum b-nut that’s often used to connect a pair of tubes. The technician was Hollman. In the aftermath of the rocket crash, Hollman flew to Los Angeles to confront Musk directly. He’d spent years working day and night on the Falcon 1 and felt enraged that Musk had called out him and his team in public. Hollman knew that he’d fastened the b-nut correctly and that observers from NASA had been looking over his shoulder to check the work. When Hollman charged into SpaceX’s

PDF Image | SpaceX and the Quest

PDF Search Title:

SpaceX and the Quest

Original File Name Searched:

ashlee-vance-elon-musk-tesla-spacex-and-the-quest.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)