PDF Publication Title:
Text from PDF Page: 103
agreed to join forces and formed this ragtag group.” Had anyone from Detroit stopped by Tesla Motors at this point, they would have ended up in hysterics. The sum total of the company’s automotive expertise was that a couple of the guys at Tesla really liked cars and another one had created a series of science fair projects based on technology that the automotive industry considered ridiculous. What’s more, the founding team had no intention of turning to Detroit for advice on how to build a car company. No, Tesla would do what every other Silicon Valley start-up had done before it, which was hire a bunch of young, hungry engineers and figure things out as they went along. Never mind that the Bay Area had no real history of this model ever having worked for something like a car and that building a complex, physical object had little in common with writing a software application. What Tesla did have, ahead of anyone else, was the realization that 18650 lithium ion batteries had gotten really good and were going to keep getting better. Hopefully that coupled with some effort and smarts would be enough. Straubel had a direct pipeline into the smart, energetic engineers at Stanford and told them about Tesla. Gene Berdichevsky, one of the members of the solar-powered-car team, lit up the second he heard from Straubel. An undergraduate, Berdichevsky volunteered to quit school, work for free, and sweep the floors at Tesla if that’s what it took to get a job. The founders were impressed with his spirit and hired Berdichevsky after one meeting. This left Berdichevsky in the uncomfortable position of calling his Russian immigrant parents, a pair of nuclear submarine engineers, to tell them that he was giving up on Stanford to join an electric car start-up. As employee No. 7, he spent part of the workday in the Menlo Park office and the rest in Straubel’s living room designing three-dimensional models of the car’s powertrain on a computer and building battery pack prototypes in the garage. “Only now do I realize how insane it was,” Berdichevsky said. Tesla soon needed to expand to accommodate its budding engineer army and to create a workshop that would help bring the Roadster, as they were now calling the car, to life. They found a two-story industrial building in San Carlos at 1050 Commercial Street. The 10,000-square-foot facility wasn’t much, but it had room to build a research and development shop capable of knocking out some prototype cars. There were a couple of large assembly bays on the ride side of the building and two large rollup doors big enough for cars to drive in and out. Wright divided the open floor space into segments—motors, batteries, power electronics, and final assembly. The left half of the building was an office space that had been modified in weird ways by the previous tenant, a plumbing supply company. The main conference room had a wet bar and a sink where the faucet was a swan’s mouth, and the hot and cold knobs were wings. Berdichevsky painted the office white on a Sunday night, and the next week the employees made a field trip to IKEA to buy desks and hopped online to order their computers from Dell. As for tools, Tesla had a single Craftsman toolbox loaded with hammers, nails, and other carpentry basics. Musk would visit now and again from Los Angeles and was unfazed by the conditions, having seen SpaceX grow up in similar surroundings. The original plan for producing a prototype vehicle sounded simple. Tesla would take the AC Propulsion tzero powertrain and fit it into the Lotus Elise body. The company had acquired a schematic for an electric motor design and figured it could buy a transmission from a company in the United States or Europe and outsource any other parts from Asia. Tesla’s engineers mostly needed to focus on developing the battery pack systems, wiring the car, and cutting and welding metal as needed to bring everything together. Engineers love to muck around with hardware, and the Tesla team thought of the Roadster as something akin to a car conversion project that could be done with two orPDF Image | SpaceX and the Quest
PDF Search Title:
SpaceX and the QuestOriginal File Name Searched:
ashlee-vance-elon-musk-tesla-spacex-and-the-quest.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |