Desalination Performance Assessment Anion-Exchange Membranes

PDF Publication Title:

Desalination Performance Assessment Anion-Exchange Membranes ( desalination-performance-assessment-anion-exchange-membranes )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 013

Membranes 2020, 10, 347 13 of 15 3.5. The Practicality of Design and Scalability The ease of workflow constitutes a great benefit of this new and larger design. Previously, tiny components made the unit difficult to assemble, seal, and service afterward. Such difficulties have been significantly reduced. Besides the obvious goal to increase the capacity of the device from the performance point of view, the larger throughput of the device also allows for more samples to be collected in shorter periods of time, which speeds up the process of testing. Changes to the separator were described above in the Section 2: Materials and Methods. The experiments have proven this design to be functional both in terms of separation and integration into the device itself. Being in between the membranes that cover the whole area, the sealing of the unit is no longer that difficult, and technically, one less part (the separator in previous generations) is needed. An important feature of the frame and separator being a single component is that it allows the unit to be easily scaled-up into multi-stack arrangement only by adding more frames with functional porous media, which will be executed in our future work. The potential drawbacks of this design include the impossibility to reposition the separator as it is integrated into the middle part. Therefore, the whole unit needs to be disassembled in order to change the frame for the porous material. Also, the separator in our testing unit is thick (3 mm), which may still cause mixing as the solution is driven towards it or affect the water recovery. Other future design changes would include revising the plastic material for the casing and the system of bolts that hold the parts together. During our experiments at higher voltages, the unit got warm to the touch (as discussed in Section 3.3: Energy Consumption), which, in combination with pressure presented by the screws, deformed the casing and the media frame and made it very difficult to disassemble and reassemble again while keeping it sealed. 4. Conclusions Scalable design is an essential criterion for every new technology to be useful in practice. Up until now, shock electrodialysis was demonstrated only on very small-scale laboratory units. We built and demonstrated functionalities of a larger unit with 10–100× larger capacity while using two different porous materials with one order of magnitude larger pores. Results showed more than 99% ion removal in a one-step desalination process of single electrolyte solutions without any significant energy consumption increments, compared to previously tested designs due to the size and shape changes to the medium. With a few design changes, this unit would be ready to be rebuilt into a multi-stack device and possibly scaled into larger dimensions to significantly decrease the energy requirements, both of which are the goals of our future work. While SED cannot compete with common desalination technologies yet, cheap components and materials, together with its attractive functionalities, may offer an interesting solution for small-scale operation in freshwater production and selective water treatment in the future. We have shown that the shock electrodialysis and deionization shock propagation is not limited only to cations and cation-exchange membranes, respectively, but can work with anion-exchange membranes as well, while obtaining a high degree of desalination. The results confirm the suitability of scaled (dimensionless) current as a single variable parameter to estimate and compare the performance of the device in the overlimiting region, as long as the porous medium is well characterized. Besides the shape and size, it is the pore size that affects the desalination performance. We have shown that material with pore sizes of around 40 μm most probably decreases the desalination performance significantly, while pore sizes around 16 μm provide a relatively good balance between a good solution throughput and deionization shock propagation. That said, these results need to be verified once the surface charge of both materials is characterized and compared. The desalination performance, stability, and possibly water recovery should also be further improved by also securing constant flow-rates and adjusting the thickness and position of the separator.

PDF Image | Desalination Performance Assessment Anion-Exchange Membranes

PDF Search Title:

Desalination Performance Assessment Anion-Exchange Membranes

Original File Name Searched:

membranes-10-00347.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)