logo

Electrodialytic Processes

PDF Publication Title:

Electrodialytic Processes ( electrodialytic-processes )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 047

Membranes 2020, 10, 221 47 of 72 water. By coupling farm scale economic data from Australia and single-cell MCDI performance reports, Bales et al. [297] developed a model to evaluate the profitability of the approach. They estimated a final cost < 1 AU$/kL for water of different salinities depending of the crops. Further real-life experiments would confirm these encouraging results and clarify the sustainability of the strategy. Other alternatives for irrigation water production include FO-ED hybrid systems due to the low power consumption inherent to FO [298]. Most of those approaches are based on wastewater and will be developed in Section 5.2.1. 5.1.3. Integration of Energy Production from Salinity Gradient Power As mentioned in Section 4.11, engineers and researchers are still struggling to produce electricity using reverse ED technologies in an economically viable way. Although, simple filtration pre-treatments are implemented, using natural streams at large scale is requiring more extensive steps in order to reach performance levels obtained at smaller scale with artificial NaCl solutions. One strategy consists in increasing the profitability of the process by including water purification as another output. This synergistic approach recently called power-free electrodialysis (PFED) [299] was implemented on several small-scale studies (<200 cm2 effective surface area per membrane) [6,257]. Chen et al. [300] brought back this concept and adapted it for application in an insular environment. An integrated RED-ED stack was used with artificial NaCl brines. The idea of using only one set of electrodes for both types of ED cell did not allow energy recovery for other uses, however it provided an ionic current loop self-powering the system. In order to optimize eco-efficiency, a next step would be to reuse streams generated by one type of ED cell into the other. By doing so, it would limit brine discharge in the environment and ensure better control over the quality of input streams to prevent fouling and scaling, thus improving process performances. Luo et al. [299] investigated such strategy with coupled ED and RED stacks in continuous and batch-wise mode using NaCl and artificial sea water solutions. Concentrated brine generated by ED was used as high-salinity stream (HSS) feed for RED. Although they did not recover electric power generated in excess, they found out that optimal energy output is achieved when resistance of RED and ED stacks is comparable. Other desalination technologies have been used at small-scale to provide HSS for RED. RO coupled with membrane distillation produced superior NaCl concentration allowing the downstream RED to exhibit a power density up to 2.4 W/m2 and near-zero liquid discharge desalination [301]. However, a detailed cost-efficiency analysis would be needed to establish the eco-efficiency of this strategy, especially when considering thermal energy requirements. Tristán et al. [302] carried out such evaluation for a SWRO-RED process. Their detailed LCA study demonstrated the low environmental impact of RED (comparable to solar and wind power systems) and identified that the fabrication of PES membrane spacers is the step with the highest energy cost. While functional, the SWRO-RED strategy would require optimization for better energy recovery and eco-efficiency. SWRO-MCDI-RED was investigated at lab scale and showed better performances and lower energy consumption (by 17%) when compared to two-pass RO [258]. The eco-efficiency evaluation of a multi-effect distillation (MED)-RED process recycling low-temperature waste heat showed promising results when comparing with other sustainable technologies [303]. An alternative configuration consists in implementing “upstream” RED associated with ED or other desalination technologies in order to readily supply power from RED to ED [304]. Recently, a salinity gradient energy storage system (SGESS) was investigated [305]. The two-step process combined a RED phase (discharging) producing energy from streams of different salinities, followed by an ED phase (charging) to regenerate the initial streams at higher salinity than natural streams. Cost analysis showed competitiveness for occidental energy markets if a 10-years lifetime is achieved. Life cycle assessment of a projected full-scale SGESS process led to similar as Li-ion battery productions, albeit in the first quintile of such studies in terms of eco-efficiency results. Campione et al. [10] proposed a more complete RED-ED coupling strategy including two RED stacks. The “upstream” RED stack would function as pre-treatment for a more controlled salinity of

PDF Image | Electrodialytic Processes

electrodialytic-processes-047

PDF Search Title:

Electrodialytic Processes

Original File Name Searched:

membranes-10-00221.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP