logo

Emerging Tech for Wastewater Treatment

PDF Publication Title:

Emerging Tech for Wastewater Treatment ( emerging-tech-wastewater-treatment )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 088

Emerging Technologies Nitrogen Removal prepared 2012 March 2013 Technology Summary Deammonification (Sidestream and Mainstream Deammonification and Mainstream Nitrite Shunt) Objective: Biological nitrogen removal from high-strength streams (e.g., sludge liquors, landfill leachate). Description: State of Development: Innovative (Sidestream Deammonification) and Emerging/Research (Mainstream Deammonification and Mainstream Nitrite Shunt). The deammonification process (sidestream) involves removing ammonia in a two step process that requires initial partial nitritation to convert approximately 50 percent of the ammonia to nitrite. Anaerobic ammonia oxidation (Anammox) bacteria convert the nitrite and the remaining ammonia to nitrogen gas under anoxic conditions. The process requires only partial nitritation, which theoretically reduces the energy demand up to 63 percent compared to conventional nitrification and denitrification. The deammonification process is a completely autotrophic process and does not require any supplemental carbon. Mainstream deammonification and mainstream nitrite shunt are two emerging/research technologies that offer much promise. Beyond the savings in aeration energy and supplemental carbon associated with Nitrogen removal, is the dramatic energy benefit of redirecting wastewater carbon to anaerobic processes for energy generation, as well as the BNR process volume benefit associated with keeping the carbon out of that system and the additional aeration energy benefit of the same. Example processes – DEMON®, SHARON-ANAMMOX, ANAMMOX® Paques, ANITA-Mox, DeAmmon Where is it applied – The deammonification process has been successfully implemented as a sidestream process for treating centrate and filtrate recycle streams from dewatering anaerobically digested biosolids, with over 20 first generation municipal and industrial processes operational in Europe. The relatively high temperature and high ammonia concentrations typically found in these recycle flows make them ideal candidates for this process. Deammonification has not yet been installed in the main liquid stream process at full scale due to the difficulty in inhibiting nitrite oxidizing bacteria (NOB) growth, the relatively lower tempera- ture and ammonia concentration, and the need for selective retention of Anammox bacteria. However, a full- scale full-plant deammonification demonstration has been installed at the Strass WWTP in Austria where a sidestream deammonification process can provide seed for bioaugmentation in the full-plant testing. Pilot scale testing of full-plant deammonification is also being implemented at plants in Washington DC and Virginia. Process Controls – The main process controls are solids retention time (SRT), pH, dissolved oxygen, temperature, and nitrite concentration. Aeration mode (continuous vs. intermittent) and whether to use innoculum of Anammox bacteria are also used in process control as competition for oxygen between ammonia oxidizing bacteria (AOB) and NOB is controlled by DO level and aeration time and regimen. Monitoring the biomass is also used for volatile suspended solids content as well microscopic analysis as indicators of efficient operation. The control of the deammonification process is similar to the nitritation and denitritation process because NOB growth must be inhibited. In addition, the deammonification process must have adequate SRT. The growth rate of anammox bacteria is extremely slow (approximately 13 times slower than nitrifying autotrophs), which requires special attention to SRTs in the deammonification reactors to prevent anammox washout. Anammox bacteria tend to grow as relatively heavy granules, which allows for the possibility of separating anammox bacteria from other ammonia oxidizing bacteria (AOB) and NOB. The use of cyclone (such as in the DEMON® process), or through the controlled granular size (such as in the ANAMMOX® Paques process) allows for separate control of the anammox SRT (must be more than 30 days) while maintaining optimal SRTs for AOB growth (typically between 2 to 3 days). Configurations – Several process configurations are used for the deammonification process. Paques has both the two-step SHARON-ANAMMOX process as well as a one-step granular sludge process with both AOB and anammox in the reactor at the same time. The SHARON-ANAMMOX process (ANAMMOX – Paques) is a two-stage, suspended growth implementing a SHARON reactor, followed by an anoxic anammox reactor. The SHARON reactor does not have solids retention while the anammox reactor uses an upflow solids granulation process to generate biomass that will be retained in spite of the slow growth rate. 3-16 Wastewater Treatment and In-Plant Wet Weather Management

PDF Image | Emerging Tech for Wastewater Treatment

emerging-tech-wastewater-treatment-088

PDF Search Title:

Emerging Tech for Wastewater Treatment

Original File Name Searched:

emerging-tech-wastewater-treatment-management.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP