Emerging Tech for Wastewater Treatment

PDF Publication Title:

Emerging Tech for Wastewater Treatment ( emerging-tech-wastewater-treatment )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 115

March 2013 Anaerobic Processes updated 2012 Emerging Technologies Technology Summary Anaerobic Membrane BioReactor (An-MBR) Objective: State of Development: Anaerobic treatment combined with membrane Research (for municipal applications). filtration of biomass to improve effluent quality. Description: The An-MBR process is a promising process with the potential for energy-efficient treatment of municipal and industrial wastewaters. It couples an anaerobic biological process with a membrane for liquid/solids separation. The anaerobic process removes organic material [Chemical Oxygen Demand (COD)] without aeration by converting it to methane gas and a small amount of new biomass. The membrane is usually of pore size classified as microfiltration (retains particles > 0.1 μm, or ultrafiltration (retains particles > 0.01 μm) so does not allow even individual microbial cells to pass through with the permeate. The process is energy efficient and minimizes sludge management requirements. Consequently, it is particularly desirable for treating high-strength wastes that can be costly when treated aerobically. Although anaerobic processes are most often operated at warm temperatures to increase rate, An-MBRs have recently been shown to perform adequately at 15°C (Raskin et al. 2012). This is because the membrane allows for operation at high solids concentrations and therefore high solids retention times to compensate for the low growth rate. The membrane also retains the poorly settleable solids typical of traditional anaerobic processes thereby improving effluent quality. One recent study (Raskin et al. 2012) found an average permeate COD concentration of 36 mg/L and Biological Oxygen Demand after 5 days (BOD5) below 30 mg/L. Although some amount of membrane fouling improves organic removal, excessive fouling can be controlled by back flushing and biogas sparging. Membrane fouling has been shown to be controlled if membranes are placed directly in contact with granular activated carbon (GAC) in a fluidized bed MBR and a high quality effluent (5 mg/l BOD and zero TSS) could be produced (Kim et al. 2011). This research was done at a small scale, in a warm climate and it did not address long-term membrane fouling problems. Nevertheless, it estimated a significant decrease in secondary process energy use in addition to significant methane production. Recent An-MBR research was also done at the University of Michigan (WERF 2012) on both synthetic wastewater and municipal wastewater at temperatures down to 15 degrees C and using biogas sparging to minimize membrane fouling. Effluent BOD of less than 30 mg/l was achieved for extended periods of time. Further research is needed on optimizing process performance at low temperatures and demonstrating performance at pilot and full scale. An-MBRs are operated at elevated temperatures to pretreat high-strength wastes before additional aerobic treatment but also show real potential for complete treatment of domestic wastewater COD. Nutrient removal is minimal. A significant proportion of the methane produced is dissolved in the effluent. This will typically be stripped out of the effluent and emitted to the atmosphere to reduce the concentration of methane in the effluent. Because methane is a significant greenhouse gas, the emissions from this should be considered. Comparison to Established Technologies: The An-MBR process is similar to an aerobic MBR facility except that the biological process is anaerobic. Therefore the An-MBR requires less energy, generates biogas, and produces less waste biomass than an aerobic MBR. Although most anaerobic processes are operated at > 25°C, including a membrane allows the An-MBR process to be operated at temperatures more typical of domestic wastewater without heating (< 20°C). Much like in an MBR, the membranes in the An-MBR are back flushed with permeate but rather than also being sparged with air as in the MBR, the An-MBR membranes are sparged with the biogas produced in the process. As is typical with the MBR, the membranes have a limited life in that mineral deposits, cell material, and other compounds will progressively foul the membrane irreversibly until adequate flux can no longer be recovered. Unlike aerobic processes (including MBRs) anaerobic processes are not effective for transformation of ammonia or for nutrient removal. Wastewater Treatment and In-Plant Wet Weather Management 3-43

PDF Image | Emerging Tech for Wastewater Treatment

PDF Search Title:

Emerging Tech for Wastewater Treatment

Original File Name Searched:

emerging-tech-wastewater-treatment-management.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)