logo

Overlimiting Current and Shock Electrodialysis in Porous Media

PDF Publication Title:

Overlimiting Current and Shock Electrodialysis in Porous Media ( overlimiting-current-and-shock-electrodialysis-porous-media )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 011

Langmuir Article (21) Yossifon, G.; Mushenheim, P.; Chang, H.-C. Controlling nanoslot overlimiting current with the depth of a connecting microchamber. Europhys. Lett. 2010, 90, 64004. (22) Wang, Y.-C.; Stevens, A. L.; Han, J. Million-fold preconcentra- tion of proteins and peptides by nanofluidic filter. Anal. Chem. 2005, 77, 4293−4299. (23) Kim, S. J.; Ko, S. H.; Kang, K. H.; Han, J. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 2010, 5, 297−301. (24) Mani, A.; Zangle, T. A.; Santiago, J. G. On the propagation of concentration polarization from microchannel/nanochannel interfaces part I: analytical model and characteristic analysis. Langmuir 2009, 25, 3898−3908. (25) Zangle, T. A.; Mani, A.; Santiago, J. G. On the propagation of concentration polarization from microchannel/nanochannel interfaces part II: numerical and experimental study. Langmuir 2009, 25, 3909− 3916. (26) Zangle, T. A.; Mani, A.; Santiago, J. G. Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. Chem. Soc. Rev. 2010, 39, 1014−1035. (27) Mani, A.; Bazant, M. Z. Deionization shocks in microstructures. Phys. Rev. E 2011, 84, 061504. (28) Yaroshchuk, A. Over-limiting currents and deionization “shocks” in current-induced polarization: local-equilibrium analysis. Adv. Colloid Interface Sci. 2012, 183−184, 68Đ81. (29) Dydek, E. V.; Bazant, M. Z. Nonlinear dynamics of ion concentration polarization in porous media: The leaky membrane model. AIChE J. 2013, 59, 3539−3555. (30) Bazant, M. Z.; Squires, T. M. Induced-charge electrokinetic phenomena. Curr. Opin. Colloid Interface Sci. 2010, 15, 203−213. (31) Yaroshchuk, A. E. Transport properties of long straight nano- channels in electrolyte solutions: a systematic approach. Adv. Colloid Interface Sci. 2011, 168, 278−291. (32) Yaroshchuk, A. What makes a nano-channel? A limiting-current criterion. Microfluid. Nanofluid. 2012, 12, 615−624. (33) Rubinstein, I.; Zaltzman, B. Convective diffusive mixing in concentration polarization: from Taylor dispersion to surface convection. J. Fluid Mech. 2013, 728, 239−278. (34) van der Heyden, F. H.; Stein, D.; Dekker, C. Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 2005, 95, 116104. (35) Delgado, A.; Gonzaĺez-Caballero, F.; Hunter, R.; Koopal, L.; Lyklema, J. Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 2007, 309, 194−224. (36) Druzgalski, C. L.; Andersen, M. B.; Mani, A. Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface. Phys. Fluids 2013, 25, 110804. (37) Deen, W. M. Analysis of Transport Phenomena, 2nd ed.; Oxford University Press: New York, 2012. (38) Mattsson, E.; Bockris, J. O. Galvanostatic students of the kinetics of deposition and dissolution in the copper + copper sulfate system. Trans. Faraday Soc. 1959, 55, 1586−1601. (39) Brown, O. R.; Thirsk, H. R. The rate-determining step in the electrodeposition of copper on copper from aqueous cupric sulfate solutions. Electrochim. Acta 1965, 10, 383−393. (40) Rosso, M. Electrodeposition from a binary electrolyte: new developments and applications. Electrochim. Acta 2007, 53, 250−256. (41) Behrens, S. H.; Grier, D. G. The charge of glass and silica surfaces. J. Chem. Phys. 2001, 115, 6716−6721. (42) Gentil, C.; Côte, D.; Bockelmann, U. Transistor based study of the electrolyte/SiO2 interface. Phys. Status Solidi A 2006, 203, 3412− 3416. (43) Semichaevsky, A. V.; Johnson, H. T.; Low, K.; Paul, D.; Chandra, A.; Bastawros, A. Focused electric field-induceed ion transport: experiments and modeling. Electrochem. Solid State Lett. 2010, 13, D100−D103. (44) Huth, J. M.; Swinney, H. L.; McCormick, W. D.; Kuhn, A.; Argoul, F. Role of convection in thin-layer electrodeposition. Phys. Rev. E 1995, 51, 3444−3461. (45) Quickenden, T. I.; Xu, Q. Z. Toward a reliable value for the diffusion coefficient of cupric ion in aqueous solution. J. Electrochem. Soc. 1996, 143, 1248−1253. (46) Noulty, R. A.; Leaist, D. G. Diffusion in aqueous copper sulfate and copper sulfate-sulfuric acid solutions. J. Solution Chem. 1987, 16, 813−825. (47) Koch, D. L.; Brady, J. F. Dispersion in fixed beds. J. Fluid Mech. 1985, 154, 399−427. (48) van Deemter, J. J.; Zuiderweg, F. J.; Klinkeneerg, A. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci. 1956, 5, 271−289. (49) Jani, A. M.; Anglin, E. J.; McInnes, S. J. P.; Losic, D.; Shapter, J. G.; Voelcker, N. H. Nanoporous anodic aluminium oxide membranes with layered surface chemistry. Chem. Commun. 2009, 3062−3064. (50) Jani, A. M.; Kempson, I. M.; Losic, D.; Voelcker, N. H. Dressing in layers: layering surface functionalities in nanoporous aluminum oxide membranes. Angew. Chem., Int. Ed. 2010, 49, 7933−7937. (51) Ai, S.; Lu, G.; He, Q.; Li, J. Highly flexible polyelectrolyte nanotubes. J. Am. Chem. Soc. 2003, 125, 11140−11141. (52) Yeo, S. J.; Kang, H.; Kim, Y. H.; Han, S.; Yoo, P. J. Layer-by- layer assembly of polyelectrolyte multilayers in three-dimensional inverse opal structured templates. ACS Appl. Mater. Interfaces 2012, 4, 2107−2115. (53) U.S. Environmental Protection Agency Lead and Copper Rule, Code of Federal Regulations 40 CFR Part 141, 2007. (54) Bazant, M. Z. Regulation of ramified electrochemical growth by a diffusive wave. Phys. Rev. E 1995, 52, 1903−1914. (55) Albright, J. G.; Miller, D. G. Mutual-diffusion coefficients at 25° in the system silver nitrate-water. J. Phys. Chem. 1972, 76, 1853−1857. (56) Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813−821. (57) Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Liu, J.; Kemner, K. M. Functionalized monolayers on ordered mesoporous supports. Science 1997, 276, 923−926. (58) Pennathur, S.; Santiago, J. G. Electrokinetic transport in nanochannels. 1. Theory. Anal. Chem. 2005, 77, 6772−6781. (59) Zhao, R.; van Soestbergen, M.; Rijnaarts, H.; van der Wal, A.; Bazant, M.; Biesheuvel, P. Time-dependent ion selectivity in capacitive charging of porous electrodes. J. Colloid Interface Sci. 2012, 384, 38− 44. 16177 dx.doi.org/10.1021/la4040547 | Langmuir 2013, 29, 16167−16177

PDF Image | Overlimiting Current and Shock Electrodialysis in Porous Media

overlimiting-current-and-shock-electrodialysis-porous-media-011

PDF Search Title:

Overlimiting Current and Shock Electrodialysis in Porous Media

Original File Name Searched:

02_Deng_Langmuir2013.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP