logo

Anticancer activity of biogenerated silver nanoparticles

PDF Publication Title:

Anticancer activity of biogenerated silver nanoparticles ( anticancer-activity-biogenerated-silver-nanoparticles )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 017

according to the method of Shevchenko et al. with some modifications as already described [85]. The tryptic peptide extracts were dried in a vacuum centrifuge and dissolved in 0.1% trifluoroacetic acid (TFA). Peptide mixtures were desalted by μZip-TipC18 (Millipore, MA)). The matrix, R-cyano-4-hydroxycinnamic acid (HCCA), was purchased from Sigma-Aldrich. A saturated solution of HCCA (1 μL) at 2 mg/200 μL in CH3CN/H2O (50:50 (v/v)) containing 0.1% TFA was mixed with 1 μL of peptide solution and loaded onto the MALDI target plate and left to dry. A peptide calibration standard was spotted separately onto the MALDI target plate. Mass spectra were obtained using an Ultraflex MALDI- TOF-TOF (Bruker Daltonics, Bremen, Germany) or a MALDI-TOF Voyager DE-PRO (Applied Biosystems) mass spectrometer. Peptide mass fingerprinting was compared to the theoretical masses from the Swiss-Prot or NCBI sequence databases using Mascot (http://www.matrixscience.com/). Typical search parameters were as follows: 50 ppm of mass tolerance, carbamidomethylation of cysteine residues, one missed enzymatic cleavage for trypsin, a minimum of four peptide mass hits was required for a match, methionine residues could be considered in oxidized form, no restriction was placed on the isoelectric point of the protein, and a protein mass range from 5 to 100 kDa was allowed. Transmission electron microscopy (TEM) analysis Cells were grown to confluence in a 12-well plate and treated with appropriate concentrations of both AgNPs-EPS for 24 h, washed in 0.075 M phosphate buffer pH 6.9 and immediately fixed in a solution of 3% glutaraldehyde in cacodylate buffer 0,066M pH 7.2 for 30 min as already described [72]. Then the cells were dehydrated using increasing concentrations of ethanol (10, 30, 50, 70 and 100%) at room temperature and gradually infiltrated in Spurr’s low viscosity embedding resin and polymerized at 70°C for 8 h. After polymerization, specimens were sectioned with an ultramicrotome (model LKB III) using a diamond knife. The thin sections were collected on copper grids, stained for 10 min in 2% uranyl acetate and 5 min in lead citrate and then they were observed by Transmission Electron Microscopy (PHILIPS 268 Morgagni, FEI ) operating under standard conditions. Fluorescence spectra of DNA The emission-excitation (EEM) spectra of DNA were recorded by Luminescent Spectrometer (Perkin Elmer LS 55). The instrument was equipped with a Xenon discharge lamp equivalent to 20KW for 8 μs duration pulse, wide at half eight minor 10μs with excitation slit 5 nm and emission slit 5 nm. The extracted DNA was suspended in 1 ml milliQ and transferred in cuvette for fluorescence analyses. The EEM scan spectra were measured by scanning simultaneously both the excitation (Eex), which ranged from 200 to 320 nm, and the emission (Eem), which ranged from 200–700 nm. The EEM contour maps were obtained by original equipped computer software. The relative fluorescence units (RFU) of peaks were also determined. Statistical analysis Results are presented as means ± standard error. Data were analysed using Student’s t-test. p < 0.05 was considered significant; p < 0.01 was considered highly significant and p < 0.001 was considered very highly significant. ACKNOWLEDGMENTS This work was partially supported by Grants from MIUR – Italy (FIRB-MERIT n.RBNE08YYBM) to S.F., University of Palermo (n.2014-ATE-0185) to S.F. and P.C, and by 5 × 1000 contribution to COBS. 2D-DIGE and MALDI-TOF-TOF analysis was performed using the instruments of Advanced Technologies Network (ATeN) Center at the University of Palermo, acquired in the frame of “Mediterranean Center for Human Health Advanced Biotechnologies” (Med- CHHAB) project (Project code: PONa3_00273 – Avviso MIUR D.D. n. 254/Ric del 18/05/2011). We are grateful to Dott. Antonella D’Anneo, Dott. Fabiana Geraci and Dott. Melchiorre Cervello for providing some reagents. CONFLICTS OF INTEREST Authors declare no conflicts of interest. REFERENCES 1. 2. 3. 4. 5. Lanone S, Boczkowski J. Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med. 2006; 6:651–63. Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015; 93:52–79. https://doi.org/10.1016/j.ejpb.2015.03.018. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology. 2008; 19:295103. https:// doi.org/10.1088/0957-4484/19/29/295103. Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv. 2012; 2012:751075. https://doi.org/10.1155/2012/751075. Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug- resistant bacteria. J Appl Microbiol. 2012; 112:841–52. https://doi.org/10.1111/j.1365-2672.2012.05253.x. www.impactjournals.com/oncotarget 9701 Oncotarget

PDF Image | Anticancer activity of biogenerated silver nanoparticles

anticancer-activity-biogenerated-silver-nanoparticles-017

PDF Search Title:

Anticancer activity of biogenerated silver nanoparticles

Original File Name Searched:

oncotarget-09-9685.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Infinity Turbine Developing Spinning Disc Reactor SDR or Spinning Disc Reactors reduce processing time for liquid production of Silver Nanoparticles.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP