Biomedical Applications of Silver Nanoparticles

PDF Publication Title:

Biomedical Applications of Silver Nanoparticles ( biomedical-applications-silver-nanoparticles )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 006

Nanomaterials 2018, 8, 681 6 of 25 The main complication related to urinary catheterization is represented by the occurrence of catheter-associated urinary tract infections (CAUTIs) [138]. It was shown that a polymer matrix impregnated with AgNPs displayed hydrophilic surface properties, resulting in the prevention of bacterial biofilm formation and the deposition of proteins and electrolytes responsible for incrustation and adherence of microorganisms onto the surface [139]. With regards to silicon urethral catheters, Kocuran-capped silver glyconanoparticles were successfully evaluated as effective antibiofilm and antimicrobial coatings [118]. Despite the concerns regarding CVC-related complacency with respect to septic techniques, catheters with antimicrobial properties were taken into consideration as a feasible means of supplying additional protection against microbial contamination, further reducing colonization and infection risks [117]. 5. Silver Nanoparticles for Dental Applications Dental caries represent one of the most extensive oral-cavity-related affections worldwide, being also an economic burden [140]. By enhancing the remineralization process and controlling biofilm development, nanotechnology-derived dental-related strategies aim to limit or even eliminate the clinical impact of caries [140]. In addition to their intrinsic highly biocompatible behavior, the materials for dental barrier membranes (DBM), which are often used for efficient alveolar bone reconstruction, must accomplish some specific and additional features and functions [141]. Different metal-coated implants were evaluated against various pathogens responsible for dental-related biofilm formation and subsequent implant failure [142]. In order to prevent the pathogenic contamination of dental implants, proper tooth-brushing techniques, prophylactic antibiotics, and antimicrobial mouthwashes are specifically recommended [143]. A major goal in dentistry is to provide the proper protection of the oral cavity, which represents a pathogenic-susceptible gateway for the entire body [144]. Biofilms developed on dental implant surfaces may additionally cause inflammatory lesions on the peri-implant mucosa, thus increasing the risk of implant failure [145]. Silver was used for centuries in oral care and gained worldwide attention in the 19th century, being a major component in dental amalgams used for tooth restoration [146]. AgNPs were also used in various fields of dentistry, such as dental prostheses, restorative and endodontic dentistry, and implantology [147]. Thanks to their unique properties feasible for different domains of real interest in modern society, silver nanoparticles hold a prominent place in nanomaterial-related restorative, regenerative, and multifunctional biomedicine [148,149]. An attractive strategy embraced by worldwide practitioners in order to provide additional bactericidal effects to general-use dental materials is to modify or embed them with silver-based nanostructures [150]. Though silver has favorable effects in caries prophylaxis in the form of nanosilver diamine fluoride (SDF), the use of this particular compound has some disadvantages, one of the most noticeable effects being represented by tooth staining [151]. By reducing the size of AgNPs, the contact surface will be considerably increased; in this way, the antimicrobial effects of silver would be improved, and the use of nanosilver could prevent black staining in teeth, which usually occurs after the application of SDF [152]. Antibacterial resins could be used in clinical dental applications, both in orthodontics and restorative dentistry [153]. In orthodontics, these resins could be used as bracket or branked bonding materials, while, in restorative dentistry, they could be used as filling or denture base material [153]. Therefore, in order to improve their physico-mechanical properties and antimicrobial effects, a method for incorporating AgNPs into acrylic resin denture-base materials was developed [154]. Because the oral cavity is an active ecosystem usually colonized by various pathogenic microorganisms, dental materials and implants have an increased risk of contamination and subsequent colonization processes [155]. In terms of superior antimicrobial activity, promising results were reported with respect to the incorporation of silver-based nanosystems within adhesive resins [156,157], orthodontic cements [158,159], and dental composites [160–162]. In addition to being used as

PDF Image | Biomedical Applications of Silver Nanoparticles

PDF Search Title:

Biomedical Applications of Silver Nanoparticles

Original File Name Searched:

nanomaterials-08-00681-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Infinity Turbine Developing Spinning Disc Reactor SDR or Spinning Disc Reactors reduce processing time for liquid production of Silver Nanoparticles.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)