logo

Microwave Irradiation Synthesis Silver Nanoparticle

PDF Publication Title:

Microwave Irradiation Synthesis Silver Nanoparticle ( microwave-irradiation-synthesis-silver-nanoparticle )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 011

Polymers 2020, 12, 1155 11 of 16 Table 1. Summary of the thermal properties based on TGA and DSC measurements. Sample RGO/Ag NPS PS-PMMA RGO/Ag NPs-(PS-PMMA) R-(GO-PS-PMMA)-Ag NPs T (◦C) deg 158 288, 367 400 196, 400 Td (10% Weight Loss) (◦ C) - 344 340 228 Tmax (50% Weight Loss) (◦ C) - 397 397 <800 T (◦C) g - 93.5 88 181 3.8. Mechanical Properties of the Nanocomposites The hardness (H) and elastic modulus (Es) of the nanocomposites were determined from the P–h profiles that are shown in Figure 9 at 100 μN loads. It can be observed that the reduced graphene oxide (RGO) nano-fillers, the AgNPs-PMMA matrix, and the AgNPs-PSTY significantly improved the mechanical properties. The nanocomposite R-(GO-PMMA)/AgNPs and R (GO-PSTY)/SectionAgNPs obtained using the MWI method, however, exhibited significant degradation in the mechanical properties. The higher dispersibility and interfacial interactions between the GO nano-filler and the AgNPs-PMMA matrix were correlated with the mechanical improvements, as indicated by the dense microstructural features. These enhancements in the mechanical characteristics could be attributed to the stiffness of the nanocomposite, which arises from the number of entanglements and strong bonds within the network. Extra physical entanglements that are introduced through the cross-linking increases the overall stiffness. In the case of the R-(GO-PMMA) nanocomposite, the hardness and elastic modulus values are very similar to those of PMMA, which can be attributed to the similar Tg value and the effect of incoherent microstructural features. Based on the microstructural discussion above, the uniform distribution of AgNPs in the MWI method was expected to provide mechanical support during nanoindentation testing. However, in the case of R-(GO-PMMA)/AgNPs, the hardness and elastic modulus values were significantly low, which can be attributed to the lamella microstructure.

PDF Image | Microwave Irradiation Synthesis Silver Nanoparticle

microwave-irradiation-synthesis-silver-nanoparticle-011

PDF Search Title:

Microwave Irradiation Synthesis Silver Nanoparticle

Original File Name Searched:

polymers-12-01155-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Infinity Turbine Developing Spinning Disc Reactor SDR or Spinning Disc Reactors reduce processing time for liquid production of Silver Nanoparticles.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP