logo

Nanoparticle Inkjet Inks for Near-Infrared Sintering

PDF Publication Title:

Nanoparticle Inkjet Inks for Near-Infrared Sintering ( nanoparticle-inkjet-inks-near-infrared-sintering )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 013

Nanomaterials 2020, 10, 892 13 of 14 8. Lee, T.M.; Han, H.S.; Kim, B.; Kwak, S.W.; Noh, J.H.; Kim, I. Roll offset printing process based on interface separation for fine and smooth patterning. Thin Solid Films 2013, 548, 566. [CrossRef] 9. Khan, S.; Lorenzelli, L.; Dahiya, R.S. Technologies for printing sensors and electronics over large flexible substrates: A review. IEEE Sens. J. 2015, 15, 3164. [CrossRef] 10. Vandevenne, G.; Marchal, W.; Verboven, I.; Drijkoningen, J.; D’Haen, J.; van Bael, M.K.; Hardy, A.; Deferme, W. A study on the thermal sintering process of silver nanoparticle inkjet inks to achieve smooth and highly conducting silver layers. Phys. Status Solidi Appl. Mater. Sci. 2016, 213, 1403. [CrossRef] 11. Marchal, W.; Longo, A.; Briois, V.; van Hecke, K.; Elen, K.; van Bael, M.K.; Hardy, A. Understanding the Importance of Cu(I) Intermediates in Self-Reducing Molecular Inks for Flexible Electronics. Inorg. Chem. 2018, S7, 10. [CrossRef] 12. Schoner, C.; Tuchscherer, A.; Blaudeck, T.; Jahn, S.F.; Baumann, R.R.; Lang, H. Particle-free gold metal-organic decomposition ink for inkjet printing of gold structures. Thin Solid Films 2013, 531, 147. [CrossRef] 13. Torrisi, F.; Hasan, T.; Wu, W.; Sun, Z.; Lombardo, A.; Kulmala, T.S.; Hsieh, G.W.; Jung, S.; Bonaccorso, F.; Paul, P.J.; et al. Inkjet-printed graphene electronics. ACS Nano 2012, 6, 2992. [CrossRef] [PubMed] 14. Ervin, M.H.; Le, L.T.; Lee, W.Y. Inkjet-printed flexible graphene-based supercapacitor. Electrochim. Acta 2014, 147, 610. 15. Halonen, E.; Viiru, T.; Ostman, K.; Cabezas, A.L.; Mantysalo, M. Oven sintering process optimization for inkjet-printed Ag Nanoparticle ink. IEEE Trans. Components 2013, 3, 350. [CrossRef] 16. Cherrington, M.; Claypole, T.C.; Deganello, D.; Mabbett, I.; Watson, T.; Worsley, D. Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink. J. Mater. Chem. 2011, 21, 7562. [CrossRef] 17. Novacentrix, Conductive Inks for Printed Electronics JS-B40G. Available online: https://www.novacentrix. com/products/metalon-conductive-inks (accessed on 8 January 2019). 18. Denneulin, A.; Blayo, A.; Neuman, C. Infra-red assisted sintering of inkjet printed silver tracks on paper substrates. J. Nanopart. Res. 2011, 13, 3815. [CrossRef] 19. Laakso, P.; Ruotsalainen, S.; Halonen, E.; Mäntysalo, M.; Kemppainen, A. Sintering of printed nanoparticle structures using laser treatment. J. Laser Appl. 2009, 102, 1360. 20. Peng, P.; Hu, A.; Zhou, Y. Laser sintering of silver nanoparticle thin films: Microstructure and optical properties. Appl. Phys. A 2012, 108, 685. [CrossRef] 21. Theodorakos, I.; Zacharatos, F.; Geremia, R.; Karnakis, D.; Zergioti, I. Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics. Appl. Surf. Sci. 2015, 336, 157. [CrossRef] 22. Moon, S.-J.; Kim, M.-K.; Kang, H.; Kang, K.; Lee, S.-H.; Hwang, J.Y.; Moon, Y. Electrical sintering of inkjet-printed silver electrode for c-Si solar cells. In Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011. 23. Perelaer, J.; Abbel, R.; Wünscher, S.; Jani, R.; van Lammeren, T.; Schubert, U.S. Roll-to-roll compatible sintering of inkjet printed features by photonic and microwave exposure: From non-conductive ink to 40% bulk silver conductivity in less than 15 seconds. Adv. Mater. 2012, 24, 2620. [CrossRef] 24. Reddy, M.P.; Zhou, X.B.; Jing, L.; Huang, Q. Microwave sintering, characterization and magnetic properties of double perovskite La2CoMnO6 nanoparticles. Mater. Lett. 2014, 132, 55. [CrossRef] 25. Gilissen, K.; Stryckers, J.; Moons, W.; Manca, J.; Deferme, W. Microwave annealing, a promising step in the roll-to-roll processing of organic electronics. Facta Univ. Ser. Electron. Energ. 2015, 28, 143. [CrossRef] 26. Zhai, D.; Zhang, T.; Guo, J.; Fang, X.; Wei, J. Water-based ultraviolet curable conductive inkjet ink containing silver nano-colloids for flexible electronics. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 424, 1. [CrossRef] 27. Gaspar, C.; Passoja, S.; Olkkonen, J.; Smolander, M. IR-sintering efficiency on inkjet-printed conductive structures on paper substrates. Microelectron. Eng. 2016, 149, 135. [CrossRef] 28. Sowade, E.; Kang, H.; Mitra, K.Y.; Weiß, O.J.; Weber, J.; Baumann, R.R. Roll-to-roll infrared (IR) drying and sintering of an inkjet-printed silver nanoparticle ink within 1 second. J. Mater. Chem. C 2015, 3, 11815. [CrossRef] 29. Silver Nanoparticle Properties—Cytodiagnostics. Available online: http://www.cytodiagnostics.com (accessed on 8 January 2019). 30. Novacentrix, Conductive Inks for Printed Electronics JSA101A and JS-A102A. Available online: https: //www.novacentrix.com/products/metalon-conductive-inks (accessed on 29 October 2019). 31. Zhang, Z.; Zhang, X.; Xin, Z.; Deng, M.; Wen, Y.; Song, Y. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology 2011, 22, 425601. [CrossRef] [PubMed]

PDF Image | Nanoparticle Inkjet Inks for Near-Infrared Sintering

nanoparticle-inkjet-inks-near-infrared-sintering-013

PDF Search Title:

Nanoparticle Inkjet Inks for Near-Infrared Sintering

Original File Name Searched:

nanomaterials-10-00892.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Infinity Turbine Developing Spinning Disc Reactor SDR or Spinning Disc Reactors reduce processing time for liquid production of Silver Nanoparticles.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP