Plant and Microbe-Based Synthesis of Metallic Nanoparticles

PDF Publication Title:

Plant and Microbe-Based Synthesis of Metallic Nanoparticles ( plant-and-microbe-based-synthesis-metallic-nanoparticles )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

Nanomaterials 2020, 10, 1146 12 of 24 4. Mechanisms of Action of Nanoparticles against Phytopathogens Although green synthesized metallic NPs have been studied for their potentials against phytopathogens, the exact mode of actions of NPs is not completely understood [165]. To date, some mechanisms have been reported, such as protein dysfunction (e.g., oxidation of cysteine in Fe-binding site, destruction of Fe–S cluster, exchange of catalytic metal, and exchange of structural metal), production of reactive oxygen species(ROS) and antioxidant depletion, impaired membrane function (e.g., membrane damage, loss of membrane potential), interference with nutrient uptake (e.g., inhibition of Fe (III) transporter gene expression) and genotoxicity (e.g., double-strand breaks) [166]. These mechanisms may not operate individually, but function in combination against various phytopathogens [52,166]. The adhesion of NPs with microbial cell membrane occurs due to the electrostatic attraction between the negatively charged cell membrane of microbes and NPs with positive or low negative charges. The morphological structures of the membrane are disturbed by the NPs and the membrane depolarization causes the disruption of membrane permeability and respiratory actions, and ultimately damages the cell structures, leading to cell death. This disruption of cell structure leads to the leakage of internal cell content including proteins, enzymes, DNA, and metabolites. In addition, the NPs may cause irregular pits on the microbial cell wall that facilitate NPs’ entry into periplasmic space and inside the cells. NP actions on membrane damage and pit formation on the cell surface can be observed by using TEM and SEM [14]. Masum et al. observed the green synthesized AgNPs effects on Acidovorax oryzae strain RS-2 using TEM and showed highly ruptured cell walls, leakage of cytoplasmic and nucleic contents, swollen structure leading to bacterial death [112]. In another study, biosynthesized AgNPs were applied to Fusarium graminearum strain PH-1 and antifungal activities of distortion of hyphae and damaging cell walls were observed by both SEM and TEM [20]. Similar effects of AgNPs on several other phytopathogenic fungi such as Alternaria alternata, Botrytis cinera and Trichosporon asahii were also observed [167]. The toxicity of NPs may be caused by the formation of ROS [143]. Free radicals can damage the cell wall and various biomolecules such as proteins, lipids and DNA. DNA damages, such as mutations, deletions, single-strand breaks, double-strand breaks, and cross-linking with proteins, may occur [168]. Zhang et al. revealed that damaging cell membrane and generating ROS are involved in the antibacterial mechanisms [169]. They observed damage of cell membrane and AgNPs inside Azotobacter vinelandii cells using TEM and revealed AgNP-induced hydroxyl radicals inside bacterial cells using electron spin resonance. 5. Environmental Consequences of Metallic Nanoparticles Several studies have revealed that NPs can be used to manage or control plant pathogens [5,6]. Besides this benefit, there may be some toxic or adverse effects of these NPs on various components of the environments (Figure 3). The NPs that have been used for plant pathogen management may be dispersed from the crop lands to the soil, water and atmosphere. The dispersion may take place through leaching, surface run-off by rain, and transport by air current or trophic transfer [170]. Different studies on this subject have suggested that NPs may be absorbed by microbes in the soils, sediments and plant roots. Later, these NPs are migrated from roots to other parts of the plants, and accumulation occurs [171]. Shifting of NPs from one trophic level to another trophic level takes place as the microbes, plant products or their waste materials are utilized or consumed by various organisms such as protozoa, arthropods, annelids, mollusks, fish, insects, birds and mammals [172,173]. This demonstrates that the adverse effects may be inherited by their offspring [174]. This scenario has also been observed in marine organisms [175] and also in food chains of plant-herbivore-carnivore [172,173,176,177]. Therefore, a standard application of nanomaterials in crop plants is needed for safe and sustainable use of nanotechnology in agriculture. For the management of plant pathogens, the application of NPs should be accompanied with the knowledge of possible risks for direct or indirect application to crop plants, and the ecosystem where the crop plants have interacted with microorganisms, animals or

PDF Image | Plant and Microbe-Based Synthesis of Metallic Nanoparticles

PDF Search Title:

Plant and Microbe-Based Synthesis of Metallic Nanoparticles

Original File Name Searched:

nanomaterials-10-01146.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Infinity Turbine Developing Spinning Disc Reactor SDR or Spinning Disc Reactors reduce processing time for liquid production of Silver Nanoparticles.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)