logo

Plant and Microbe-Based Synthesis of Metallic Nanoparticles

PDF Publication Title:

Plant and Microbe-Based Synthesis of Metallic Nanoparticles ( plant-and-microbe-based-synthesis-metallic-nanoparticles )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 023

Nanomaterials 2020, 10, 1146 23 of 24 160. Rajesh, K.M.; Ajitha, B.; Reddy, Y.A.K.; Suneetha, Y.; Reddy, P.S. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik 2018, 154, 593–600. [CrossRef] 161. Hassall,K.A.Pesticides:TheirProperties,UsesandDisadvantages:PartI:GeneralIntroduction;Insecticides and Related Compounds. Br. Vet. J. 1965, 121, 105–118. [CrossRef] 162. Kutz,F.W.;Wood,P.H.;Bottimore,D.P.Organochlorinepesticidesandpolychlorinatedbiphenylsinhuman adipose tissue. Rev. Environ. Contam. Toxicol. 1991, 120, 1–82. [PubMed] 163. Nisar,P.;Ali,N.;Rahman,L.;Ali,M.;Shinwari,Z.K.Antimicrobialactivitiesofbiologicallysynthesizedmetal nanoparticles: An insight into the mechanism of action. J. Biol. Inorg. Chem. 2019, 24, 929–941. [CrossRef] [PubMed] 164. Rafique,M.;Sadaf,I.;Rafique,M.S.;Tahir,M.B.Areviewongreensynthesisofsilvernanoparticlesandtheir applications. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1272–1291. [CrossRef] 165. Hajipour,M.J.;Fromm,K.M.;AkbarAshkarran,A.;JimenezdeAberasturi,D.;deLarramendi,I.R.;Rojo,T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511. [CrossRef] [PubMed] 166. Lemire,J.A.;Harrison,J.J.;Turner,R.J.Antimicrobialactivityofmetals:Mechanisms,moleculartargetsand applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [CrossRef] [PubMed] 167. Xia,Z.-K.;Ma,Q.-H.;Li,S.-Y.;Zhang,D.-Q.;Cong,L.;Tian,Y.-L.;Yang,R.-Y.Theantifungaleffectofsilver nanoparticles on Trichosporon asahii. J. Microbiol. Immunol. Infect. 2016, 49, 182–188. [CrossRef] 168. Soenen,S.;Rivera-Gil,P.;Montenegro,J.-M.;Parak,W.J.;DeSmedt,S.;Braeckmans,K.Cellulartoxicityof inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011, 6, 446–465. [CrossRef] 169. Zhang,L.;Wu,L.;Si,Y.;Shu,K.Size-dependentcytotoxicityofsilvernanoparticlestoAzotobactervinelandii: Growth inhibition, cell injury, oxidative stress and internalization. PLoS ONE 2018, 13, e0209020. [CrossRef] 170. Morales-Díaz, A.B.; Ortega-Ortíz, H.; Juárez-Maldonado, A.; Cadenas-Pliego, G.; González-Morales, S.; Benavides-Mendoza, A. Application of nanoelements in plant nutrition and its impact in ecosystems. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 013001. [CrossRef] 171. Gardea-Torresdey,J.L.;Rico,C.M.;White,J.C.TrophicTransfer,Transformation,andImpactofEngineered Nanomaterials in Terrestrial Environments. Environ. Sci. Technol. 2014, 48, 2526–2540. [CrossRef] 172. Kim, J.I.; Park, H.-G.; Chang, K.-H.; Nam, D.H.; Yeo, M.-K. Trophic transfer of nano-TiO2 in a paddy microcosm: A comparison of single-dose versus sequential multi-dose exposures. Environ. Pollut. 2016, 212, 316–324. [CrossRef] [PubMed] 173. De la Torre Roche, R.; Servin, A.; Hawthorne, J.; Xing, B.; Newman, L.A.; Ma, X.; Chen, G.; White, J.C. Terrestrial Trophic Transfer of Bulk and Nanoparticle La2O3 Does Not Depend on Particle Size. Environ. Sci. Technol. 2015, 49, 11866–11874. [CrossRef] [PubMed] 174. Shimizu,M.;Tainaka,H.;Oba,T.;Mizuo,K.;Umezawa,M.;Takeda,K.Maternalexposuretonanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part. Fibre Toxicol. 2009, 6, 20. [CrossRef] [PubMed] 175. Bielmyer-Fraser,G.K.;Jarvis,T.A.;Lenihan,H.S.;Miller,R.J.CellularPartitioningofNanoparticulateversus Dissolved Metals in Marine Phytoplankton. Environ. Sci. Technol. 2014, 48, 13443–13450. [CrossRef] 176. Zhu,X.;Wang,J.;Zhang,X.;Chang,Y.;Chen,Y.TrophictransferofTiO2nanoparticlesfromdaphniato zebrafish in a simplified freshwater food chain. Chemosphere 2010, 79, 928–933. [CrossRef] 177. Werlin, R.; Priester, J.H.; Mielke, R.E.; Krämer, S.; Jackson, S.; Stoimenov, P.K.; Stucky, G.D.; Cherr, G.N.; Orias, E.; Holden, P.A. Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat. Nanotechnol. 2011, 6, 65–71. [CrossRef] 178. Kurepa,J.;Paunesku,T.;Vogt,S.;Arora,H.;Rabatic,B.M.;Lu,J.;Wanzer,M.B.;Woloschak,G.E.;Smalle,J.A. Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett. 2010, 10, 2296–2302. [CrossRef] 179. Wang,S.;Kurepa,J.;Smalle,J.A.Ultra-smallTiOnanoparticlesdisruptmicrotubularnetworksinArabidopsis thaliana. Plant Cell Environ. 2011, 34, 811–820. [CrossRef] 180. Ali,S.H.;Ali,S.A.NanotechnologyIsthePotentialCauseofPhytotoxicity.J.Biomater.2019,3,1–6. 181. Servin, A.D.; White, J.C. Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 2016, 1, 9–12. [CrossRef]

PDF Image | Plant and Microbe-Based Synthesis of Metallic Nanoparticles

plant-and-microbe-based-synthesis-metallic-nanoparticles-023

PDF Search Title:

Plant and Microbe-Based Synthesis of Metallic Nanoparticles

Original File Name Searched:

nanomaterials-10-01146.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Infinity Turbine Developing Spinning Disc Reactor SDR or Spinning Disc Reactors reduce processing time for liquid production of Silver Nanoparticles.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP