Polyphenol-Loaded Nanoparticles in Food Industry

PDF Publication Title:

Polyphenol-Loaded Nanoparticles in Food Industry ( polyphenol-loaded-nanoparticles-food-industry )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 013

Nanomaterials 2019, 9, 1629 13 of 21 the possible toxicity of nanomaterials, such as ENPs, which are used in food-packaging materials, should be addressed, and future work should be focused on the validation of relevant methods for the characterization of nanomaterials in complex matrices, and for measuring their reactivity and in vitro degradation, in order to facilitate safety-risk assessments. Another approach could be the use of native nanocarriers, such as casein micelles, for which the GRAS status is verified. It should be kept in mind that numerous health claims related to polyphenols have failed to be demonstrated in vivo studies, and the intake of polyphenols may pose health risks in high doses. Certainly, knowledge of nanotechnology and polyphenols and awareness of their benefits and risks should be increased. Author Contributions: All authors participated in the creation and conceptualization of the article; D.D.M., D.A.P., and A.Ž.K. conducted the literature search; writing—original draft preparation, writing—review and editing were carried out by D.D.M., D.A.P., S.M.L., and M.B.P.; supervision was carried out by V.A.N., Ž.L.T., and M.B.P. Funding: This research was funded by the Ministry of Education, Science, and Technological Development of the Republic of Serbia, Project TR 31069, OI 172017, III 46001, III 46009, and III 46010. Acknowledgments: D.D.M. and D.A.P. are recipients of the grants for PhD study and a contract from the Ministry of Education, Science, and Technological Development of Republic of Serbia (Project TR 31069). Conflicts of Interest: The authors declare no conflicts of interest. References 1. Acevedo-Fani, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Nanostructured emulsions and nanolaminates for delivery of active ingredients: Improving food safety and functionality. Trends Food Sci. Technol. 2017, 60, 12–22. [CrossRef] 2. Faridi Esfanjani, A.; Jafari, S.M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf. B Biointerfaces 2016, 146, 532–543. [CrossRef] [PubMed] 3. Huang, Q.; Yu, H.; Ru, Q. Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci. 2010, 75, R50–R57. [CrossRef] [PubMed] 4. McClements, D.J.; Decker, E.A.; Park, Y.; Weiss, J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit. Rev. Food Sci. Nutr. 2009, 49, 577–606. [CrossRef] 5. Ranjan, S.; Dasgupta, N.; Chakraborty, A.R.; Melvin Samuel, S.; Ramalingam, C.; Shanker, R.; Kumar, A. Nanoscience and nanotechnologies in food industries: Opportunities and research trends. J. Nanopart. Res. 2014, 16, 2464. [CrossRef] 6. Dasgupta, N.; Ranjan, S. Nanotechnology in Food Sector. In An Introduction to Food Grade Nanoemulsions; Dasgupta, N., Ranjan, S., Eds.; Springer: Singapore, 2018; pp. 1–18. [CrossRef] 7. Ummi, A.S.; Siddiquee, S. Chapter 15—Nanotechnology Applications in Food: Opportunities and Challenges in Food Industry. In Applications in Energy, Drug and Food; Siddiquee, S., Hong, M.G.J., Rahman, M.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 298–308. [CrossRef] 8. Neo, Y.P.; Ray, S.; Jin, J.; Gizdavic-Nikolaidis, M.; Nieuwoudt, M.K.; Liu, D.; Quek, S.Y. Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein–gallic acid system. Food Chem. 2013, 136, 1013–1021. [CrossRef] [PubMed] 9. Sanguansri, P.; Augustin, M.A. Nanoscale materials development—A food industry perspective. Trends Food Sci. Technol. 2006, 17, 547–556. [CrossRef] 10. Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; et al. Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. Int. J. Nanomed. 2019, 14, 5087–5107. [CrossRef] 11. Nasrollahzadeh, M.; Sajadi, S.M.; Sajjadi, M.; Issaabadi, Z. Chapter 1—An Introduction to Nanotechnology. In An Introduction to Green Nanotechnology; Nasrollahzadeh, M., Sajadi, S.M., Sajjadi, M., Issaabadi, Z., Atarod, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 28, pp. 1–27. 12. Sanjay, S.S. Chapter 2—Safe nano is green nano. In Green Synthesis, Characterization and Applications of Nanoparticles; Shukla, A.K., Iravani, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 27–36. [CrossRef] 13. Ramachandraiah, K.; Han, S.G.; Chin, K.B. Nanotechnology in meat processing and packaging: Potential applications—A review. Asian-Australas. J. Anim. Sci. 2015, 28, 290–302. [CrossRef]

PDF Image | Polyphenol-Loaded Nanoparticles in Food Industry

PDF Search Title:

Polyphenol-Loaded Nanoparticles in Food Industry

Original File Name Searched:

nanomaterials-09-01629.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Infinity Turbine Developing Spinning Disc Reactor SDR or Spinning Disc Reactors reduce processing time for liquid production of Silver Nanoparticles.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)