logo

pomegranate leaves and their role in green silver nanoparticles

PDF Publication Title:

pomegranate leaves and their role in green silver nanoparticles ( pomegranate-leaves-and-their-role-green-silver-nanoparticles )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 010

www.nature.com/scientificreports/ Scientific RepoRtS | Vol:.(1234567890) 12. Samuel, M. S., Jose, S., Selvarajan, E., Mathimani, T. & Pugazhendhi, A. Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol. J. Photo- chem. Photobiol. B 202, 111642. https://doi.org/10.1016/j.jphotobiol.2019.111642 (2020). 13. JorgedeSouza,T.A.,RosaSouza,L.R.&Franchi,L.P.Silvernanoparticles:anintegratedviewofgreensynthesismethods,trans- formation in the environment, and toxicity. Ecotoxicol. Environ. Saf. 171, 691–700. https://doi.org/10.1016/j.ecoenv.2018.12.095 (2019). 14. Marslin,G.etal.Secondarymetabolitesinthegreensynthesisofmetallicnanoparticles.Materials11,940.https://doi.org/10.3390/ ma11060940 (2018). 15. Fischer,U.A.,Carle,R.&Kammerer,D.R.Identificationandquantificationofphenoliccompoundsfrompomegranate(Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MS(n). Food Chem. 127, 807–821. https:// doi.org/10.1016/j.foodchem.2010.12.156 (2011). 16. Zarfeshany, A., Asgary, S. & Javanmard, S. H. Potent health effects of pomegranate. Adv. Biomed. Res. 3, 100. https://doi. org/10.4103/2277-9175.129371 (2014). 17. Akkiraju, P., Tathe, P. & Mamillapalli, S. Green synthesis of silver nanoparticles from Punica granatum L. and its antimicrobial activity. Adv. Appl. Sci. Res. 8, 42–49 (2017). 18. Sarkar,S.&Kotteeswaran,V.GreensynthesisofsilvernanoparticlesfromaqueousleafextractofPomegranate(Punicagranatum) and their anticancer activity on human cervical cancer cells. Adv. Nat. Sci. 9, 025014. https://doi.org/10.1088/2043-6254/aac590 (2018). 19. Joshi, S. J., Al-Mamari, S. & Al-Azkawi, A. Green synthesis of silver nanoparticles using pomegranate peel extracts and its applica- tion in photocatalytic degradation of methylene blue. Jundishapur J. Nat. Pharm. Prod. 13, e67846. https://doi.org/10.5812/jjnpp .67846 (2018). 20. Saratale,R.G.etal.ExploitingantidiabeticactivityofsilvernanoparticlessynthesizedusingPunicagranatumleavesandanticancer potential against human liver cancer cells (HepG2). Artif. Cells Nanomed. Biotechnol. 46, 211–222. https://doi.org/10.1080/21691 401.2017.1337031 (2018). 21. da Silva, F. et al. Integrative analysis based on HPLC-DAD-MS/MS and NMR of Bertholletia excelsa bark biomass residues: determination of ellagic acid derivatives. J. Braz. Chem. Soc. https://doi.org/10.21577/0103-5053.20180215 (2018). 22. Hasnain,M.S.etal.Purpleheartplantleavesextract-mediatedsilvernanoparticlesynthesis:OptimizationbyBox-Behnkendesign. Mater. Sci. Eng. C 99, 1105–1114. https://doi.org/10.1016/j.msec.2019.02.061 (2019). 23. Jyoti, K., Baunthiyal, M. & Singh, A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 9, 217–227. https://doi.org/10.1016/j.jrras.2015.10.002 (2016). 24. Das,M.&Chatterjee,S.GreenSynthesis,CharacterizationandApplicationsofNanoparticles265–301(Elsevier,Amsterdam,2019). 25. Akbal, A., Turkdemir, M. H., Cicek, A. & Ulug, B. Relation between silver nanoparticle formation rate and antioxidant capacity of aqueous plant leaf extracts. J. Spectrosc. 2016, 4083421. https://doi.org/10.1155/2016/4083421 (2016). 26. Zuorro, A., Iannone, A., Natali, S. & Lavecchia, R. Green synthesis of silver nanoparticles using bilberry and red currant waste extracts. Processes 7, 193. https://doi.org/10.3390/pr7040193 (2019). 27. Jigyasa, K. & Rajput, J. K. Bio-polyphenols promoted green synthesis of silver nanoparticles for facile and ultra-sensitive colori- metric detection of melamine in milk. Biosens. Bioelectron. 120, 153–159. https://doi.org/10.1016/j.bios.2018.08.054 (2018). 28. Mittal,A.K.,Kumar,S.&Banerjee,U.C.Quercetinandgallicacidmediatedsynthesisofbimetallic(silverandselenium)nanoparti- cles and their antitumor and antimicrobial potential. J. Colloid Interface Sci. 431, 194–199. https://doi.org/10.1016/j.jcis.2014.06.030 (2014). 29. Li,D.,Liu,Z.,Yuan,Y.,Liu,Y.&Niu,F.Greensynthesisofgallicacid-coatedsilvernanoparticleswithhighantimicrobialactivity and low cytotoxicity to normal cells. Process Biochem. 50, 357–366. https://doi.org/10.1016/j.procbio.2015.01.002 (2015). 30. Barnaby,S.N.etal.Ellagicacidpromotedbiomimeticsynthesisofshape-controlledsilvernanochains.Nanotechnology22,225605. https://doi.org/10.1088/0957-4484/22/22/225605 (2011). 31. Sobczak-Kupiec, A., Malina, D., Wzorek, Z. & Zimowska, M. Influence of silver nitrate concentration on the properties of silver nanoparticles. Micro Nano Lett. 6, 656. https://doi.org/10.1049/mnl.2011.0152 (2011). 32. Jiang,X.C.,Chen,W.M.,Chen,C.Y.,Xiong,S.X.&Yu,A.B.Roleoftemperatureinthegrowthofsilvernanoparticlesthrough a synergetic reduction approach. Nanoscale Res. Lett. 6, 32. https://doi.org/10.1007/s11671-010-9780-1 (2011). 33. Liu, H., Zhang, H., Wang, J. & Wei, J. Effect of temperature on the size of biosynthesized silver nanoparticle: deep insight into microscopic kinetics analysis. Arab. J. Chem. 13, 1011–1019. https://doi.org/10.1016/j.arabjc.2017.09.004 (2020). 34. Devanesan,S.etal.AntimicrobialandcytotoxicityeffectsofsynthesizedsilvernanoparticlesfromPunicagranatumpeelextract. Nanoscale Res. Lett. 13, 315. https://doi.org/10.1186/s11671-018-2731-y (2018). 35. Jini,D.&Sharmila,S.GreensynthesisofsilvernanoparticlesfromAlliumcepaanditsinvitroantidiabeticactivity.Mater.Today 22, 432–438. https://doi.org/10.1016/j.matpr.2019.07.672 (2020). 36. Ravichandran,V.etal.Greensynthesis,characterization,antibacterial,antioxidantandphotocatalyticactivityofParkiaspeciosa leaves extract mediated silver nanoparticles. Results Phys. 15, 102565. https://doi.org/10.1016/j.rinp.2019.102565 (2019). 37. Hernández-Morales, L. et al. Study of the green synthesis of silver nanoparticles using a natural extract of dark or white Salvia hispanica L. seeds and their antibacterial application. Appl. Surf. Sci. 489, 952–961. https://doi.org/10.1016/j.apsusc.2019.06.031 (2019). 38. Hamedi,S.&Shojaosadati,S.A.RapidandgreensynthesisofsilvernanoparticlesusingDiospyroslotusextract:Evaluationoftheir biological and catalytic activities. Polyhedron 171, 172–180. https://doi.org/10.1016/j.poly.2019.07.010 (2019). 39. Varadavenkatesan, T., Selvaraj, R. & Vinayagam, R. Green synthesis of silver nanoparticles using Thunbergia grandiflora flower extract and its catalytic action in reduction of Congo red dye. Mater. Today 23, 39–42. https://doi.org/10.1016/j.matpr.2019.05.441 (2020). 40. Naganathan,K.&Thirunavukkarasu,S.Greenwaygenesisofsilvernanoparticlesusingmultiplefruitpeelswasteanditsantimi- crobial, anti-oxidant and anti-tumor cell line studies. IOP Conf. Ser. 191, 012009. https://doi.org/10.1088/1757-899x/191/1/01200 9 (2017). 41. Ahmed,S.,Ahmad,M.,Swami,B.L.&Ikram,S.Areviewonplantsextractmediatedsynthesisofsilvernanoparticlesforantimi- crobial applications: a green expertise. J. Adv. Res. 7, 17–28. https://doi.org/10.1016/j.jare.2015.02.007 (2016). 42. Mohamed, D. S., Abd El-Baky, R. M., Sandle, T., Mandour, S. A. & Ahmed, E. F. Antimicrobial activity of silver-treated bacteria against other multi-drug resistant pathogens in their environment. Antibiotics 9, 181. https://doi.org/10.3390/antibiotics9040181 (2020). 43. Pratama, M. A., Ramahdita, G. & Yuwono, A. H. The effect of silver nitrate addition on antibacterial properties of bone scaffold chitosan-hydroxyapatite. AIP Conf. Proc. https://doi.org/10.1063/1.5139334 (2019). 44. Pandian, S. R. K., Deepak, V., Kalishwaralal, K., Viswanathan, P. & Gurunathan, S. Mechanism of bactericidal activity of silver nitrate: a concentration dependent bifunctional molecule. Braz. J. Microbiol. 41, 805–809. https://doi.org/10.1590/S1517-83822 010000300033 (2010). 45. Li,W.-R.etal.Acomparativeanalysisofantibacterialactivity,dynamics,andeffectsofsilverionsandsilvernanoparticlesagainst four bacterial strains. Int. Biodeterior. Biodegrad. 123, 304–310. https://doi.org/10.1016/j.ibiod.2017.07.015 (2017). 46. Kedziora, A. et al. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19020444 (2018). (2020) 10:14851 | https://doi.org/10.1038/s41598-020-71847-5 10

PDF Image | pomegranate leaves and their role in green silver nanoparticles

pomegranate-leaves-and-their-role-green-silver-nanoparticles-010

PDF Search Title:

pomegranate leaves and their role in green silver nanoparticles

Original File Name Searched:

s41598-020-71847-5.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Infinity Turbine Developing Spinning Disc Reactor SDR or Spinning Disc Reactors reduce processing time for liquid production of Silver Nanoparticles.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP