Cathode Electrodes High-Rate Cycle-Stable Na-Ion Batteries

PDF Publication Title:

Cathode Electrodes High-Rate Cycle-Stable Na-Ion Batteries ( cathode-electrodes-high-rate-cycle-stable-na-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 011

Batteries 2022, 8, 181 11 of 12 14. Chao, D.; Lai, C.-H.; Liang, P.; Wei, Q.; Wang, Y.-S.; Zhu, C.; Deng, G.; Doan-Nguyen, V.V.T.; Lin, J.; Mai, L.; et al. Sodium vanadium fluorophosphates (NVOPF) array cathode designed for high-rate full sodium ion storage device. Adv. Energy Mater. 2018, 8, 1800058. [CrossRef] 15. Wang, B.; Han, Y.; Wang, X.; Bahlawane, N.; Pan, H.; Yan, M.; Jiang, Y. Prussian blue analogs for rechargeable batteries. iScience 2018, 3, 110. [CrossRef] 16. Du, G.; Tao, M.; Li, J.; Yang, T.; Gao, W.; Deng, J.; Qi, Y.; Bao, S.J.; Xu, M. Low-operating temperature, high-rate and durable solid-state sodium-ion battery based on polymer electrolyte and prussian blue cathode. Adv. Energy Mater. 2020, 10, 1903351. [CrossRef] 17. Yoo, G.; Koo, B.-R.; An, H.-R.; Huang, C.; An, G.-H. Enhanced and stabilized charge transport boosting by Fe-doping effect of V2O5 nanorod for rechargeable Zn-ion battery. J. Ind. Eng. Chem. 2021, 99, 344. [CrossRef] 18. Tapia-Ruiz, N.; Dose, W.M.; Sharma, N.; Chen, H.; Heath, J.; Somerville, J.W.; Maitra, U.; Islam, M.S.; Bruce, P.G. High voltage structural evolution and enhanced Na-ion diffusion in P2-Na2/3Ni1/3−xMgxMn2/3O2 (0 ≤ x ≤ 0.2) cathodes from diffraction, electrochemical and ab initio studies. Energy Environ. Sci. 2018, 11, 1470. [CrossRef] 19. Islam, M.S.; Fisher, C.A.J. Lithium and sodium battery cathode materials: Computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 2014, 43, 185. [CrossRef] 20. Ma, G.; Zhao, Y.; Huang, K.; Ju, Z.; Liu, C.; Hou, Y.; Xing, Z. Effects of the starting materials of Na0.44MnO2 cathode materials on their electrochemical properties for Na-ion batteries. Electrochim. Acta 2016, 222, 36. [CrossRef] 21. He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan, M.C.; Liu, H.; Gallash, T.; et al. Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries. Nano Energy 2016, 27, 602. [CrossRef] 22. Zhang, J.; Yu, D.Y.W. Stabilizing Na0.7MnO2 cathode for Na-ion battery via a single-step surface coating and doping process. J. Power Sources 2018, 391, 106. [CrossRef] 23. Wang, J.; Zhou, Q.; Liao, J.; Ding, X.; Hu, Q.; He, X.; Chen, C.-H. Suppressing the Unfavorable Surface Layer Growth on Na0.44MnO2 Cathode by a NaTi2(PO4)3 Coating To Improve Cycling Stability and Ultrahigh Rate Capability. ACS Appl. Energy Mater. 2019, 2, 7497. [CrossRef] 24. Zhou, X.; Zhao, A.; Chen, Z.; Cao, Y. Research progress of tunnel-structural Na0.44MnO2 cathode for sodium-ion batteries: A mini review. Electrochem. Commum. 2021, 122, 106897. [CrossRef] 25. Whitacre, J.F.; Tevar, A.; Sharma, S. Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem. Commum. 2010, 12, 463. [CrossRef] 26. Doeff, M.M.; Richardson, T.J.; Hwang, K.-T. Electrochemical and structural characterization of titanium-substituted manganese oxides based on Na0.44MnO2. J. Power Sources 2004, 135, 240. [CrossRef] 27. Zhong, Y.; Yang, M.; Zhou, X.; Zhou, Z. Structural design for anodes of lithium-ion batteries: Emerging horizons from materials to electrodes. Mater. Horiz. 2015, 2, 553. [CrossRef] 28. Wu, J.; Yang, S.; Cai, W.; Bi, Z.; Shang, G.; Yao, J. Multi-characterization of LiCoO2 cathode films using advanced AFM-based techniques with high resolution. Sci. Rep. 2017, 7, 11164. [CrossRef] 29. Li, Y.; Tan, B.; Wu, Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265. [CrossRef] 30. Zhong, Y.; Yang, M.; Zhou, X.; Luo, Y.; Wei, J.; Zhou, Z. Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: Rational design of MnCO3/Large-area graphene composites. Adv. Mater. 2015, 27, 806. [CrossRef] 31. Lee, S.H.; Huang, C.; Johnston, C.; Grant, P.S. Spray printing and optimization of anodes and cathodes for high performance Li-Ion batteries. Electrochim. Acta 2018, 292, 546. [CrossRef] 32. Huang, C.; Dontigny, M.; Zaghib, K.; Grant, P.S. Low-tortuosity cathodes by ice and graded lithium ion battery templating. J. Mater. Chem. A 2019, 7, 21421. [CrossRef] 33. Lee, S.H.; Huang, C.; Grant, P.S. Multi-layered composite electrodes of high power Li4Ti5O12 and high capacity SnO2 for smart lithium ion storage. Energy Storage Mater. 2021, 38, 70. [CrossRef] 34. Sung, K.-W.; Koo, B.-R.; Ahn, H.-J. Hybrid nanocomposites of tunneled-mesoporous sulfur-doped carbon nanofibers embedded with zinc sulfide nanoparticles for ultrafast lithium storage capability. J. Alloys Compd. 2021, 854, 157206. [CrossRef] 35. Lee, S.H.; Huang, C.; Grant, P.S. High energy lithium ion capacitors using hybrid cathodes comprising electrical double layer and intercalation host multi-layers. Energy Storage Mater. 2020, 33, 408. [CrossRef] 36. Lee, S.H.; Huang, C.; Grant, P.S. Layer-by-layer printing of multi-layered heterostructures using Li4Ti5O12 and Si for high power Li-ion storage. Nano Energy 2019, 61, 96. [CrossRef] 37. Huang, C.; Grant, P.S. Coral-like cathodes by ice directional porosity lithium ion battery templating. J. Mat. Chem. A 2018, 6, 14689. [CrossRef] 38. Huang, C.; Young, N.P.; Zhang, J.; Snaith, H.J.; Grant, P.S. A two layer electrode structure for improved Li Ion diffusion and volumetric capacity in Li Ion batteries. Nano Energy 2017, 31, 377. [CrossRef] 39. Xu, R.; Yang, Y.; Yin, F.; Liu, P.; Cloetens, P.; Liu, Y.; Lin, F.; Zhao, K.J. Heterogeneous damage in Li-ion batteries: Experimental analysis and theoretical modeling. Mech. Phys. Solids 2019, 129, 160. [CrossRef] 40. Shasien, M.; Suzuki, M.; Tsutai, Y. Controlling the coating microstructure on axial suspension plasma spray process. Surf. Coat. Technol. 2018, 356, 96.

PDF Image | Cathode Electrodes High-Rate Cycle-Stable Na-Ion Batteries

PDF Search Title:

Cathode Electrodes High-Rate Cycle-Stable Na-Ion Batteries

Original File Name Searched:

batteries-08-00181-v3.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)