Cathode Electrodes High-Rate Cycle-Stable Na-Ion Batteries

PDF Publication Title:

Cathode Electrodes High-Rate Cycle-Stable Na-Ion Batteries ( cathode-electrodes-high-rate-cycle-stable-na-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

Batteries 2022, 8, 181 12 of 12 41. Zhang, X.; Ju, Z.; Housel, L.M.; Wang, L.; Zhu, Y.; Singh, G.; Sadique, N.; Takeuchi, K.J.; Takeuchi, E.S.; Marschilok, A.C.; et al. Promoting transport kinetics in Li-ion battery with aligned porous electrode architectures. Nano Lett. 2019, 19, 8255. [CrossRef] [PubMed] 42. Shi, W.-J.; Yan, Y.-W.; Chi, C.; Ma, X.-T.; Zhang, D.; Xu, S.-D.; Chen, L.; Wang, X.-M.; Liu, S.-B. Fluorine anion doped Na0.44MnO2 with layer-tunnel hybrid structure as advanced cathode for sodium ion batteries. J. Power Sources 2019, 427, 129. [CrossRef] 43. Zhong, W.; Huang, Q.; Zheng, F.; Deng, Q.; Pan, Q.; Liu, Y.; Li, Y.; Hu, J.; Yang, C.; Liu, M. Structural insight into the abnormal capacity of Co-substitution tunnel-type Na0.44MnO2 cathode for sodium ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 47548. [CrossRef] [PubMed] 44. Francia, V.; Martín, L.; Bayly, A.E.; Simmons, M.J.H. Particle aggregation in large counter-current spray drying towers: Nozzle configuration, vortex momentum and temperature. Procedia Eng. 2015, 102, 668. [CrossRef] 45. Jia, H.; Li, X.; Song, J.; Zhang, X.; Luo, L.; He, Y.; Li, B.; Cai, Y.; Hu, S.; Xiao, X.; et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high performance lithium-ion battery anodes. Nat. Commum. 2020, 11, 1474. [CrossRef] [PubMed] 46. Koo, B.-R.; Ahn, H.-J. Fast-switching electrochromic properties of mesoporous WO3 films with oxygen vacancy defects. Nanoscale 2017, 9, 17788. [CrossRef] 47. Yang, Y.; Chen, D.; Lu, B.; Zhao, J. Binder-free Si nanoparticle electrode with 3D porous structure prepared by electrophoretic deposition for lithium-ion batteries. J. ACS Appl. Mater. Interfaces 2015, 7, 7497. [CrossRef] 48. Feng, F.; Chen, S.; Liao, X.-Z.; Ma, Z.-F. Hierarchical hollow prussian blue rods synthesized via self-sacrifice template as cathode for high performance sodium ion battery. Small Methods 2019, 3, 1800259. [CrossRef] 49. Liu, C.; Guo, W.-L.; Wang, Q.-H.; Li, J.-G.; Yang, X.-P. Parametric study of hydrothermal soft chemical synthesis and application of Na0.44MnO2 nanorods for Li-ion battery cathode materials: Synthesis conditions and electrochemical performance. J. Alloys Compd. 2016, 658, 588. [CrossRef] 50. Xia, H.; Zhu, X.; Liu, J.; Liu, Q.; Lan, S.; Zhang, Q.; Liu, X.; Seo, J.K.; Chen, T.; Gu, L.; et al. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 2018, 9, 5100. [CrossRef] 51. Shen, Q.; Zhao, X.; Liu, Y.; Li, Y.; Zhang, J.; Zhang, N.; Yang, C.; Chen, J. Dual-Strategy of Cation-Doping and Nanoengineering Enables Fast and Stable Sodium-Ion Storage in a Novel Fe/Mn-Based Layered Oxide Cathode. Adv. Sci. 2020, 2002199. [CrossRef] [PubMed] 52. Xiao, Y.; Zhu, Y.-F.; Yao, H.-R.; Wang, P.-F.; Zhang, X.-D.; Li, H.; Yang, X.; Gu, L.; Li, Y.-C.; Wang, T.; et al. A stable layered oxide cathode material for high-performance sodium-ion battery. Adv. Energy Mater. 2019, 9, 1803978. [CrossRef] 53. Koo, B.-R.; Sung, K.-W.; Ahn, H.-J. Boosting Ultrafast Lithium Storage Capability of Hierarchical Core/Shell Constructed Carbon Nanofiber/3D Interconnected Hybrid Network with Nanocarbon and FTO Nanoparticle Heterostructures. Adv. Funct. Mater. 2020, 30, 2001863. [CrossRef] 54. Yin, H.; Qu, H.-Q.; Liu, Z.; Jiang, R.-Z.; Li, C.; Zhu, M.-Q. Long cycle life and high rate capability of three dimensional CoSe2 grainattached carbon nanofibers for flexible sodium-ion batteries. Nano Energy 2019, 58, 715. [CrossRef] 55. Liu, J.; Wang, J.; Xu, C.; Jiang, H.; Li, C.; Zhang, L.; Lin, J.; Shen, Z.X. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Adv. Sci. 2018, 5, 1700322. [CrossRef] 56. Chen, Y.; Guo, J.; Zhuo, Y.; Hu, H.; Liu, W.; Liu, F.; Liu, P.; Yan, J.; Liu, K. An inactive metal supported oxide cathode material with high rate capability for sodium ion batteries. Energy Storage Mater. 2019, 20, 263. [CrossRef] 57. Ye, J.; Baumgaertel, A.C.; Wang, Y.M.; Biener, J.; Biener, M.M. Structural Optimization of 3D Porous Electrodes for High-Rate Performance Lithium Ion Batteries. ACS Nano 2015, 9, 2194. [CrossRef] 58. Lim, E.; Jo, C.; Kim, H.; Kim, M.-H.; Mun, Y.; Chun, J.; Ye, Y.; Hwang, J.; Ha, K.-S.; Roh, K.C.; et al. Facile Synthesis of Nb2O5@Carbon Core-Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. ACS Nano 2015, 9, 7497. [CrossRef] 59. Mao, Y.; Chen, Y.; Qin, J.; Shi, C.; Liu, E.; Zhao, N. Capacitance controlled, hierarchical porous 3D ultra-thin carbon networks reinforced prussian blue for high performance Na-ion battery cathode. Nano Energy 2019, 58, 192. [CrossRef] 60. Fang, G.; Wu, Z.; Zhou, J.; Zhu, C.; Cao, X.; Lin, Y.; Chen, Y.; Wang, C.; Pan, A.; Liang, S. Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodium-Ion Battery Anode. Adv. Energy Mater. 2018, 8, 1703155. [CrossRef] 61. Liu, Y.; Liu, X.; Bu, F.; Zhao, X.; Wang, L.; Shen, Q.; Zhang, J.; Zhang, N.; Jiao, L.; Fan, L.-Z. Boosting fast and durable sodium-ion storage by tailoring well-shaped Na0.44MnO2 nanowires cathode. Electrochim. Acta 2019, 313, 122. [CrossRef] 62. Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.; Hu, Y.-S.; Yang, W.; et al. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 2015, 6, 6401. [CrossRef] [PubMed] 63. Ji, B.; Zhang, F.; Wu, N.; Tang, Y. A Dual-Carbon Battery Based on Potassium-Ion Electrolyte. Adv. Energy Mater. 2017, 7, 1700920. [CrossRef]

PDF Image | Cathode Electrodes High-Rate Cycle-Stable Na-Ion Batteries

PDF Search Title:

Cathode Electrodes High-Rate Cycle-Stable Na-Ion Batteries

Original File Name Searched:

batteries-08-00181-v3.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)