cathode materials for sustainable sodium‐ion batteries

PDF Publication Title:

cathode materials for sustainable sodium‐ion batteries ( cathode-materials-sustainable-sodium‐ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 013

61. B. Sayahpour et al., Revisiting discharge mechanism of CFx as a high 84. energy density cathode material for lithium primary battery. Adv. Energy Mater. 12, 2103196 (2022) 85. 62. Gabaudan, V., Sougrati, M. T., Stievano, L. & Monconduit, L. Chapter 4. Non-carbonaceous Negative Electrodes in Sodium Batteries. in Na-ion 86 Batteries 147–204 (2020). 63. S. Wang, X.-B. Zhang, N-Doped C@Zn3B2O6 as a low cost and environ- 87. mentally friendly anode material for Na-ion batteries: high performance and new reaction mechanism. Adv. Mater. 31, 1805432 (2019) 64. C.C. Yang, D.M. Zhang, L. Du, Q. Jiang, Hollow Ni–NiO nanoparticles 88. M. Lao et al., Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 29, 1–23 (2017) K. Song et al., Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 17, 1–26 (2021) H. Ying, W.Q. Han, Metallic Sn-based anode materials: Application in high- performance lithium-ion and sodium-ion batteries. Adv. Sci. 4, 7 (2017) W.T. Jing, C.C. Yang, Q. Jiang, Recent progress on metallic Sn- and Sb- based anodes for sodium-ion batteries. J. Mater. Chem. A 8, 2913–2933 (2020) H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012) L. Li et al., Recent progress on sodium ion batteries: potential high- embedded in porous carbon nanosheets as a hybrid anode for sodium-ion batteries with an ultra-long cycle life. J. Mater. Chem. A 6, 12663–12671 89. (2018) performance anodes. Energy Environ. Sci. 11, 2310–2340 (2018) 65. Y. Fang, B.Y. Guan, D. Luan, X.W. Lou, Synthesis of CuS@CoS2 double- 90. shelled nanoboxes with enhanced sodium storage properties. Angew. Chemie 131, 7821–7825 (2019) 66. Y. Fang, X. Yu, X.W. Lou, Bullet-like Cu9S5 hollow particles coated with 91. nitrogen-doped carbon for sodium-ion batteries. Angew. Chemie 131, 7826–7830 (2019) 92. 67. D.M. Zhang, J.H. Jia, C.C. Yang, Q. Jiang, Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batter- ies. Energy Storage Mater. 24, 439–449 (2020) 93. 68. Y. Fang, X.-Y. Yu, X.W.D. Lou, Formation of polypyrrole-coated Sb2Se3 microclips with enhanced sodium-storage properties. Angew. Chemie 94. 130, 10007–10011 (2018) 69. Y. Liu, N. Zhang, L. Jiao, Z. Tao, J. Chen, Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. 95. Adv. Funct. Mater. 25, 214–220 (2015) 70. Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced 96. sodium-ion batteries. Adv. Mater. 27, 6702–6707 (2015) 71. X. Zhou, L. Yu, X.-Y. Yu, X.W.D. Lou, Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. 97. Adv. Energy Mater. 6, 1601177 (2016) 98. 72. X. Li, J. Ni, S.V. Savilov, L. Li, materials based on antimony and bismuth for sodium Storage. Chem. A Eur. J. 24, 13719–13727 (2018) 99. 73. Y. Kim et al., An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 25, 100. 3045–3049 (2013) 101. 74. X. Fan et al., Superior stable self-healing SnP3 anode for sodium-ion bat- teries. Adv. Energy Mater. 5, 1500174 (2015) 102. 75. K.H. Seng, Z.P. Guo, Z.X. Chen, H.K. Liu, SnSb/graphene composite Shacklette, L., Toth, J. & Elsenbaumer, R. Conjugated polymer as sub- strate for the plating of alkal metal in a nonaqueous secondary battery. vol. 44 617–621 (1987) L. Shacklette, T.R. Jow, L. Townsend, Rechargeable electrodes from sodium cobalt bronzes. J. Electrochem. Soc. 135, 2669–2674 (1988) Shacklette, L., Toth, J. E. & Elsenbaumer, R. L. Conjugated polymer as substrate for the plating of alkali metal in a nonaqueous secondary bat- tery. EP patent application US 1985–749325. (1985). Shishikura, T. & Takeuchi, M. Secondary batteries. Patent Application 86109020.7. 1–26 (1987) Shishikura, T., Takeuchi, M., Murakoshi, Y., Konuma, H. & Kameyama, M. Secondar y cobalt sodium oxide-sodium alloy batter y. EP patent appli- cation. (1989). Barker, J. et al. Commercialization of Faradion’s High Energy Faradion Density Na-ion Battery Technology. in 3rd International Conference on Sodium Batteries (2016). A. Rudola et al., Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J. Mater. Chem. A 9, 8279– 8302 (2021) Barker, J. & Heap, R. Doped Nickelate Compounds. vol. US 9774035 (2017). A. Ponrouch et al., Towards high energy density sodium ion batteries through electrolyte optimization. Energy Environ. Sci. 6, 2361 (2013) T. Broux et al., High rate performance for carbon-coated Na3V2(PO4)2F3 in Na-ion batteries. Small Methods 3, 1–12 (2019) Sodium to boost batteries by 2020. in une année avec le CNRS (2017). X. Rong et al., Na-ion batteries: From fundamental research to engineer- ing exploration. Energy Storage Sci. Technol. 9, 515 (2020) Datasheet 2019 Natron energy blue tray 4000. in Distributed at the Bat- tery Show (2019). Wessells, C. D. Chapter 7. Batteries Containing Prussian Blue Analogue as anode materials for lithium ion batteries. Adv. Sci. Lett. 4, 18–23 103. (2011) Electrodes. in Na-ion Batteries 265–312 (2020). 76. L. Baggetto, E. Allcorn, R.R. Unocic, A. Manthiram, G.M. Veith, Mo3Sb7 104. as a very fast anode material for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 1, 11163 (2013) 105 77. Y. Sun et al., Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion bat- 106. teries. Nat. Commun. 4, 1870 (2013) 78. P. Senguttuvan, G. Rousse, V. Seznec, J.-M. Tarascon, M.R. Palacín, 107. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 23, 4109–4111 (2011) 108. 79. A. Rudola, K. Saravanan, S. Devaraj, H. Gong, P. Balaya, Na2Ti6O13: A potential anode for grid-storage sodium-ion batteries. Chem. Commun. 49, 7451 (2013) 109. 80. Y. Liu et al., WS2 nanowires as a high-performance anode for sodium-ion batteries. Chem. A Eur. J. 21, 11878–11884 (2015) 81. P. Gao, L. Wang, Y. Zhang, Y. Huang, K. Liu, Atomic-scale probing of the 110. dynamics of sodium transport and intercalation-induced phase transfor- mations in MoS2. ACS Nano 9, 11296–11301 (2015) 82. Y.X. Yu, Prediction of mobility, enhanced storage capacity, and volume 111. change during sodiation on interlayer-expanded functionalized Ti3C2 MXene anode materials for sodium-ion batteries. J. Phys. Chem. C 120, 5288–5296 (2016) 112. 83. Z. Liu, T. Song, U. Paik, Sb-based electrode materials for rechargeable batteries. J. Mater. Chem. A 6, 8159–8193 (2018) CATL Unveils Its Latest Breakthrough Technology by Releasing Its First Generation of Sodium-ion Batteries. (2021). C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 1–11 (2018) N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014) Y. Sun et al., Development and challenge of advanced nonaqueous sodium ion batteries. EnergyChem 2, 100031 (2020) K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 8, 1–49 (2018) K. Habib, S.T. Hansdóttir, H. Habib, Critical metals for electromobility: Global demand scenarios for passenger vehicles, 2015–2050. Resour. Conserv. Recycl. 154, 104603 (2020) K. Habib, H. Wenzel, Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling. J. Clean. Prod. 84, 348–359 (2014) P.-F. Wang, Y. You, Y.-X. Yin, Y.-G. Guo, Layered oxide cathodes for sodium- ion batteries: Phase transition, air stability, and performance. Adv. Energy Mater. 8, 1701912 (2018) C. Zhan, T. Wu, J. Lu, K. Amine, Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes— A critical review. Energy Environ. Sci. 11, 243–257 (2018) MRS ENERGY & SUSTAINABILITY // VOLUME XX // www.mrs.org/energy-sustainability-journal 13

PDF Image | cathode materials for sustainable sodium‐ion batteries

PDF Search Title:

cathode materials for sustainable sodium‐ion batteries

Original File Name Searched:

PerspectiveDesignOfCathodeMate.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)