cathode materials for sustainable sodium‐ion batteries

PDF Publication Title:

cathode materials for sustainable sodium‐ion batteries ( cathode-materials-sustainable-sodium‐ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

10 J. Song, B. Xiao, Y. Lin, K. Xu, X. Li, Interphases in sodium-ion batteries. Adv. Energy Mater. 8, 1–7 (2018) 11. E. Matios, H. Wang, C. Wang, W. Li, Enabling safe sodium metal batteries by solid electrolyte interphase engineering: A review. Ind. Eng. Chem. Res. 58, 9758–9780 (2019) 12. R.S. Carmichael, Practical Handbook of Physical Properties of Rocks and Minerals (CRC Press, Boca Raton, 1988) 13. Y. Fang, L. Xiao, X. Ai, Y. Cao, H. Yang, hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 27, 5895–5900 (2015) 14. U. Bordeaux, T. Cedex, T. Cedex, The role of the inductive effect in solid state chemistry: how the chemist can use it to modify both the structural and the physical properties of the materials. J. Alloys Compd. 188, 1–6 (1992) 15. Society T. E, Effect of structure on the Fe3+/Fe2+ redox couple in iron phos- phates. J. Electrochem. Soc. 144, 3–8 (1997) 16. C. Masquelier, L. Croguennec, Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113, 6552–6591 (2013) 17. G.H. Newman, L.P. Klemann, Ambient temperature cycling of an Na–TiS2 cell. J. Electrochem. Soc. 127, 2097–2099 (1980) 18. C. Delmas, C. Fouassier, P. Hagenmuller, Structural classification and prop- erties of the layered oxides. Physica B 99, 81–85 (1980) 19. C. Fouassier, G. Matejka, J.M. Reau, P. Hagenmuller, Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1) Le système cobalt-oxygène- sodium. J. Solid State Chem. 6, 532–537 (1973) 20. C. Fouassier, C. Delmas, P. Hagenmuller, Evolution structurale et propri- etes physiques des phases AXMO2 (A = Na, K; M = Cr, Mn, Co) (x ≤ 1). Mater. Res. Bull. 10, 443–449 (1975) 21. J.J. Braconnier, C. Delmas, C. Fouassier, P. Hagenmuller, Comportement electrochimique des phases NaxCoO2. Mater. Res. Bull. 15, 1797–1804 (1980) 22. C. Delmas, J.-J. Braconnier, C. Fouassier, P. Hagenmuller, Electrochemi- cal intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 3–4, 165–169 (1981) 23. Komaba, S. & Kubota, K. Chapter 1. Layered NaMO2 for the Positive Elec- trode. Na-ion Batteries 1–46 (2020). 24. Z. Lu, J.R. Dahn, In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2. J. Electrochem. Soc. 148, A1225 (2001) 25. K. Du et al., Exploring reversible oxidation of oxygen in a manganese oxide. Energy Environ. Sci. 9, 2575–2577 (2016) 26. P. Rozier et al., Electrochemistr y communications anionic redox chemistr y in Na-rich Na2Ru1−ySnyO3 positive electrode material for Na-ion batteries. Electrochem. commun. 53, 29–32 (2015) 27 K. Nam, K.Y. Chung, Polythiophene-wrapped olivine NaFePO4 as a cathode for Na-Ion batteries. ACS Appl. Mater. Interface 8, 4–11 (2016). https://doi. org/10.1021/acsami.6b04014 28. K. Trad et al., NaMnFe2(PO4)3 alluaudite phase: Synthesis, structure, and electrochemical properties as positive electrode in lithium and sodium bat- teries. Chem. Mater. 2, 5554–5562 (2010) 29. A. Daidouh et al., Structural and electrical study of the alluaudites. Soild State Sci. 4, 541–548 (2002) 30. P. Serras, L. Croguennec, Vanadyl-type defects in Tavorite-like NaVPO4F: from the average long range structure to local environments. Mater. Chem. A 5, 25044–25055 (2017) 31. A.A. Tsirlin et al., Phase separation and frustrated square lattice magnetism of Na1.5VOPO4F0.5. Phys. Rev. B 84, 1–16 (2011) 32. N.V.O.F. Po, W. Massa, O.V. Yakubovich, O.V. Dimitrova, Crystal structure of a new sodium vanadyl (IV) fluoride phosphate Na3(V2O2F[PO4]2). Solid State Sci. 4, 495–501 (2002) 33. J.L. Meins, G. Courbion, Phase Transitions in the Na3M2(PO4)2F3 Fam- ily (M=Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, thermal, structural, and magnetic studies. J. Solid State Chem. 277, 260–277 (1999) 34. J.B. Goodenough, H.Y. Hong, J.A.R.G. Kafalas, Mater. Res. Bull. 5, 77843 (1976) 35. A. Manthiram, J.B. Goodenough, Lithium insertion into Fe2(SO4)3 frame- works. J. Power Sources 26, 403–408 (1989) 12 MRS ENERGY & SUSTAINABILITY // VOLUME XX // www.mrs.org/energy-sustainability-journal 36. C. Delmas, F. Cherkaoui, A. Nadiri, P. Hagenmuller, A nasicon-type phase as intercalation electrode: NaTi2(PO4)3. Mater. Res. Bull. 22, 631–639 (1987) 37. O. Sato, Y. Einaga, T. Iyoda, A. Fujishima, K. Hashimoto, Reversible pho- toinduced magnetization. J. Electrochem. Soc. 144, L11–L13 (1997) 38. W.R. Entley, C.R. Treadway, G.S. Girolami, Molecular magnets constructed from cyanometalate building blocks. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 273, 153–166 (1995) 39. S. Ferlay, T. Mallah, R. Ouahès, P. Veillet, M. Verdaguer, A room-tempera- ture organometallic magnet based on prussian blue. Nature 378, 701–703 (1995) 40. J.P. Ziegler, B.M. Howard, Applications of reversible electrodeposition electrochromic devices. Sol. Energy Mater. Sol. Cells 39, 317–331 (1995) 41. D. Ellis, M. Eckhoff, V.D. Neff, Electrochromism in the mixed-valence hexa- cyanides. 1. Voltammetric and spectral studies of the oxidation and reduc- tion of thin films of prussian blue. J. Phys. Chem. 96, 1225–1231 (1981) 42. K.P. Rajan, V.D. Neff, Electrochromism in the mixed-valence hexacyanides. 2. Kinetics of the reduction of ruthenium purple and Prussian blue. J. Phys. Chem. 86, 4361–4368 (1982) 43. N. Imanishi et al., Lithium intercalation behavior into iron cyanide com- plex as positive electrode of lithium secondary battery. J. Power Sources 79, 215–219 (1999) 44. A. Eftekhari, Potassium secondary cell based on Prussian blue cathode. J. Power Sources 126, 221–228 (2004) 45. Y. Lu, L. Wang, J. Cheng, J.B. Goodenough, Prussian blue: A new frame- work of electrode materials for sodium batteries. Chem. Commun. 48, 6544–6546 (2012) 46. L. Wang et al., A superior low-cost cathode for a Na-ion battery. Angew. Chemie 125, 2018–2021 (2013) 47. R. Fong, U. von Sacken, J.R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009–2013 (1990) 48. T. Ohzuku, Y. Iwakoshi, K. Sawai, Formation of lithium-graphite intercala- tion compounds in nonaqueous electrolytes and their application as a nega- tive electrode for a lithium ion (shuttlecock) cell. J. Electrochem. Soc. 140, 2490–2498 (1993) 49. K. Sawai, T. Ohzuku, T. Hirai, Natural graphite as an anode for rechargeable nonaqueous cells. Chem. Express 5, 18 (1990) 50. Y. Liu, B.V. Merinov, W.A. Goddard, Origin of low sodium capacity in graph- ite and generally weak substrate binding of Na and Mg among alkali and alka- line earth metals. Proc. Natl. Acad. Sci. U.S.A. 113, 3735–3739 (2016) 51. W. Wan, H. Wang, Study on the first-principles calculations of graphite intercalated by alkali metal (Li, Na, K). Int. J. Electrochem. Sci. 10, 3177– 3184 (2015) 52. K. Nobuhara, H. Nakayama, M. Nose, S. Nakanishi, H. Iba, First-principles study of alkali metal-graphite intercalation compounds. J. Power Sources 243, 585–587 (2013) 53. Y. Okamoto, Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds. J. Phys. Chem. C 118, 16–19 (2014) 54. H. Moriwake, A. Kuwabara, C.A.J. Fisher, Y. Ikuhara, Why is sodium- intercalated graphite unstable? RSC Adv. 7, 36550–36554 (2017) 55. K. Westman et al., Diglyme based electrolytes for sodium-ion batteries. ACS Appl Energy Mater. (2018). https://doi.org/10.1021/acsaem.8b00360 56. B. Jache, P. Adelhelm, Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chemie 126, 10333–10337 (2014) 57. D.A. Stevens, J.R. Dahn, High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147, 1271 (2000) 58. X. Dou et al., Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today 23, 87–104 (2019) 59. Rios, C. D. M. S., Beda, A., Simonin, L. & Ghimbeu, C. M. Chapter 3. Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism. in Na-ion Batteries 101–146 (2020). 60. H.S. Hirsh et al., Role of electrolyte in stabilizing hard carbon as an anode for rechargeable sodium-ion batteries with long cycle life. Energy Storage Mater. 42, 78–87 (2021)

PDF Image | cathode materials for sustainable sodium‐ion batteries

PDF Search Title:

cathode materials for sustainable sodium‐ion batteries

Original File Name Searched:

PerspectiveDesignOfCathodeMate.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)