Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 010

Materials 2020, 13, 3453 10 of 58 = 80 mA·g−1) and 59.2 mA·h·g−1 at 30C. The capacity retention of 91.0 % and 75.9 % could be achieved at 1C (800 cycles) and 10C rate (5000 cycles), respectively. Gao et al. used a sol-gel synthesis to obtain 200 nm particles of Na3MnZr(PO4)3 coated in situ with a thin carbon layer. Na3MnZr(PO4)3 crystallizes in the rhombohedral NASICON structure. Used as a cathode, it delivered a capacity of 105 mA·h·g−1 at 0.1C rate, and a capacity retention of 91% was demonstrated at 0.5C after 500 cycles [112]. Therefore, the material was stable enough Materials 2020, 13, x FOR PEER REVIEW 10 of 53 and the particles small enough to avoid any problem related to the JT distortion associated with 3+ Msynnth.esTisheprsoycnetshseshiesreprwocaesssimhpeorertawnats, simincpeorptrainotr, wsinorckespfroiourndwoprokosr feoluecntdropchoeomr eiclaelctreoscuhletsmwiciatlh rseasmulptslewsipthrespaamrpedlesbyprseoplaidre-sdtabtye sroelaicdt-isotna,tewrehaichtiolend, wtohibcihggleedr tpoabrtigicglesr,paanrdticpleos,saibnldypnosnsibulnyifnoormn ucnairfboormn-coaartbionng-sc.oatings. Naa3MnTii((PO4)3/C hollow microspheres with an open andssttaablleNASSIICONffrraameeworrkweerree 343 ssyynnttheessiizzeed bbyyaasspprraayy-d-drryyiningg--aasssiisstteed prroocceesss[[11133]]. . Ass aanaannoodee, ,ththisisccoomppoossititeeddeemoonnssttrraatteedaa −1 −1 −1 −1 ccaappaaccitiytyooff161060mmAA·h·hgg aatt00.2.2CC. .WWhhenencyccylceldedata2tC2,Ct,htehceacpapciatcyitwyawsacsapcacpiatyciotyf 1o1f91m19Am·hA·gh gwitwhi≈th 9≈29%2 %capcapciatycitryetreentteinotnioanftaefrte5r0050c0yclyecsl.es. Naa4Fe3(PO4)2((P2OO7),), wiwthithits itms ixmedixecdrystcarlylisnteallifnreamefwraomrkewroerpkresreenptreedsenbtyedthebyorthoe- 434227 oprythrop-phyorsopphhaotessp,hpaotsese, spseoss3eDsseosd3iuDmsdoidffiumsiodnipffautshiwonaypsaitnhtwhaeysstuidnytchreystauldfryamcreywstoalrkfroafmaetywpoirckal oNf AaStIyCpOicNal-tNypAeSsItCruOcNtu-rtyepaendstrisucthturseaangodoids ctahnudsidaagteooads acacnadthidodateefaosr SaIBcast[h1o1d4e]. fCoarrbSoIBns-c[o1a1t4e]d. Cnarnbosniz-ceodatNeda4nFaen3(oPsOiz4e)d2(PN2Oa7F),ew(PitOh )its(PmOix)e,dwcitrhysitsalmlinixeedfrcarmysetwalolirnkerferapmreeswenotrekdrebpyretsheentoedrthboy- 434227 tpheyrorptho-spyhraotpehso, pspohssaetesse, spo3Dssessosdeisu3mDdsiofdfuiusimondpiffauthswioanypsaitnhtwhaeysstuindythcerystsutadlyfrcarmysetwalofrkamofeawtoyrpkicoafl −1 −1 aNtyApSiIcCalONA-tSyIpCeOsNtr-utycptuersetruscetduraesuasecdatahsoadecadtheloivderdedeliavecraepdacaitcyapoafc1it1y3 oaf n1d1310a8n dm1A08hmgA·ha·tg0.05aCt −1 −1 −1 −1 0a.0n5dC0a.1nCd,0r.e1sCp,ercetsipveclytiv(1eCly=(11C20=m12A0gmA).·gAt)0..5ACt,0t.h5eCc,athpeaciatpyawciatysw80asm8A0mhAg·ha·gftera4f0te0rc4y0c0lecsy,calensd, −1 −1 aantd20aCt2,0thCe,cthapeaccaiptyacwitayswstailsl6st0ilml6A0hmgA·ha·fgter4a4ft0e0rc4y4c0l0esc,ywclheisc,hwchoricrhescpornredsptonadrsetoenatiroenteonfti6o9n.1o%f. 6(9F.i1g%u.re(F5i)g[u1r1e55,1)1[61]1.5,116]. Figure 5. Performance of nanosized Na4Fe3(PO4)2(P2O7) plates (NFPP-E) and microporous Figure 5. Performance of nanosized Na4Fe3(PO4)2(P2O7) plates (NFPP-E) and microporous Na4Fe3(PO4)2(P2O7) particles (NFPP-C) prepared by sol-gel. (a) Cycling stability of NFPP-E electrodes Na4Fe3(PO4)2(P2O7) particles (NFPP-C) prepared by sol-gel. (a) Cycling stability of NFPP-E electrodes over 250 cycles at 0.2C and 430 cycles at 0.5C. (b) Long-term cycling stability (4400 cycles) at high over 250 cycles at 0.2C and 430 cycles at 0.5C. (b) Long-term cycling stability (4400 cycles) at high rate rate (20C) for both NFPP-E and NFPP-C electrodes. (c) Galvanostatic intermittent titration technique (20C) for both NFPP-E and NFPP-C electrodes. (c) Galvanostatic intermittent titration technique (GITT) curves of NFPP-E material for both charge and discharge processes. The inset is the chemical (GITT) curves of NFPP-E material for both charge and discharge processes. The inset is the chemical diffusion coefficient of Na+ ions as a function of voltage calculated from the GITT profile (after 30 diffusion coefficient of Na+ ions as a function of voltage calculated from the GITT profile (after 30 cycles, current density: 0.05C). (d) The calculated capacitance contribution (shadowed area) to the CV cycles, current density: 0.05C). (d) The calculated capacitance contribution (shadowed area) to the CV curve of NFPP-E at the scan rate of 0.3 mV·s−1. Reproduced with permission from [116]. Copyright curve of NFPP-E at the scan rate of 0.3 mV s−1. Reproduced with permission from [116]. Copyright 2019 Springer Nature. 2019 Springer Nature. The main problem of the NASICON-based cathodes is the low capacity limited to ≈ 100 mA·h·g−1. The main problem of the NASICON-based cathodes is the low capacity limited to ≈ 100 mAh This capacity can be increased by choosing other phosphates. In particular, Na2Fe3(PO4)3/carbon g−1. This capacity can be increased by choosing other phosp−h1ates. In particular, Na2Fe3(PO4)3/carbon nanotube nanocomposite delivered a capacity of 143 mA·h·g , but the problem is shifted to the cycle nanotube nanocomposite delivered a capacity of 143 mA h g−1, but the problem is shifted to the cycle ability, since the capacity was stable over 50 cycles. Partial substitution of Fe for Mn only results in a ability, since the capacity was stable over 50 cycles. Partial substitution of Fe for Mn only results in a decrease of capacity [117]. Fluffy Na0.67FePO4/CNT nanocactus used as a cathode delivered the same capacity, also stable over 50 cycles [118]. Fluorophosphates as cathode materials exhibit similar capacities ≈ 100 mA h g−1 as NASICON, but they have a higher operational voltage so that the loss of energy density is smaller. For instance, orthorhombic Na CoPO F/C delivers a capacity of 107 mA h g−1 with a voltage plateau at 4.3 V [119].

PDF Image | Electrode Materials for Sodium-Ion Batteries

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)