Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 041

Materials 2020, 13, 3453 41 of 58 28. Ponrouch, A.; Monty, D.; Boschin, A.; Steen, B.; Johansson, P.; Palacin, M.R. Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 22–42. [CrossRef] 29. Wang, Y.; Song, S.; Xu, C.; Hu, N.; Molenda, J.; Lu, L. Development of solid-state electrolytes for sodium-ion battery-a short review. Nano Mater. Sci. 2019, 1, 91–100. [CrossRef] 30. Mauger, A.; Julien, C.M.; Paolella, A.; Armand, M.; Zaghib, K. Building better batteries in the solid state: A review. Materials 2019, 12, 3892. [CrossRef] 31. Mauger, A.; Julien, C.M.; Paolella, A.; Armand, M.; Zaghib, K. A comprehensive review of lithium salts and beyond for rechargeable batteries: Progress and perspectives. Mater. Sci. Eng. R Rep. 2018, 134, 1–21. [CrossRef] 32. Huang, Y.; Zhao, L.; Li, L.; Xie, M.; Wu, F.; Chen, R. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: From scientific research to practical application. Adv. Mater. 2019, 31, 1808393. [CrossRef] 33. Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z. Recent progress in rechargeable sodium-ion batteries: Toward high-power applications. Small 2019, 15, 1805427. [CrossRef] 34. Jiang, Y.; Zhou, X.; Li, D.; Cheng, X.; Liu, F.; Yu, Y. Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering. Adv. Energy Mater. 2018, 8, 800068. [CrossRef] 35. Bauer, A.; Song, J.; Vail, S.; Pan, W.; Barker, J.; Lu, Y. The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv. Energy Mater. 2018, 8, 1702869. [CrossRef] 36. Chen, L.; Fiore, M.; Wang, J.E.; Ruffo, R.; Kim, D.K.; Longoni, G. Readiness level of sodium-ion battery technology: A materials review. Adv. Sustain. Syst. 2018, 2, 1700153. [CrossRef] 37. Häupler, B.; Wild, A.; Schubert, U.S. Carbonyls: Powerful organic materials for secondary batteries. Adv. Energy Mater. 2015, 5, 1402034. [CrossRef] 38. Zhu, Z.; Chen, J. Review—Advanced carbon-supported organic electrode materials for lithium (sodium)-ion batteries. J. Electrochem. Soc. 2015, 162, 2393–2405. [CrossRef] 39. Mauger, A.; Julien, C.M.; Paolella, A.; Armand, M.; Zaghib, K. Recent progress on organic electrodes materials for rechargeable batteries and supercapacitors. Materials 2019, 12, 1770. [CrossRef] 40. Han, M.H.; Gonzalo, E.; Singh, G.; Rojo, T. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries. Energy Environ. Sci. 2015, 8, 81–102. [CrossRef] 41. Guo, S.; Yi, J.; Sun, Y.; Zhou, H. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy Environ. Sci. 2016, 9, 2978–3006. [CrossRef] 42. Wang, P.F.; You, Y.; Yin, Y.X.; Guo, Y.G. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance. Adv. Energy Mater. 2018, 8, 1701912. [CrossRef] 43. Fang, Y.J.; Yu, X.Y.; Lou, X.W. A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2 microspheres. Angew. Chem. Int. Ed. 2017, 56, 5801–5805. [CrossRef] 44. Gao, L.; Chen, S.; Zhang, L.; Yang, X. Self-supported Na0.7CoO2 nanosheet arrays as cathodes for high performance sodium ion batteries. J. Power Sources 2018, 396, 379–385. [CrossRef] 45. Han, S.C.; Lim, H.; Jeong, J.; Ahn, D.; Park, W.B.; Sohn, K.S.; Pyo, M. Ca-doped NaxCoO2 for improved cyclability in sodium ion batteries. J. Power Sources 2015, 277, 9–16. [CrossRef] 46. Doubaji, S.; Ma, L.; Asfaw, H.D.; Izanzar, I.; Xu, R.; Alami, J.; Lu, J.; Wu, T.; Amine, K.; Edstrom, K.; et al. On the P2-NaxCo1-y(Mn2/3Ni1/3)yO2 cathode materials for sodium-ion batteries: Synthesis, electrochemical performance, and redox processes occurring during the electrochemical cycling. ACS Appl. Mater. Interfaces 2018, 10, 488–501. [CrossRef] [PubMed] 47. Matsui, M.; Mizukoshi, F.; Imanishi, N. Improved cycling performance of P2-type layered sodium cobalt oxide by calcium substitution. J. Power Sources 2015, 280, 205–209. [CrossRef] 48. Bianchini, M.; Wang, J.; Clément, R.; Ceder, G. A first-principles and experimental investigation of nickel solubility into the P2 NaxCoO2 sodium-ion cathode. Adv. Energy Mater. 2018, 8, 1801446. [CrossRef] 49. Kang, S.M.; Park, J.H.; Jin, A.; Jung, Y.H.; Mun, J.; Sung, Y.E. Na+ /vacancy disordered P2-Na0.67 Co1-x Tix O2 : High-energy and high-power cathode materials for sodium ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 3562–3570. [CrossRef] 50. Singh, V.K.; Singh, S.K.; Gupta, H.; Shalu, L.; Balo, A.K.; Tripathi, Y.L.; Singh Verma, R.K. Electrochemical investigations of Na0.7CoO2 cathode with PEO-NaTFSI-BMIMTFSI electrolyte as promising material for Na-rechargeable battery. J. Solid State Electrochem. 2018, 22, 1909–1919. [CrossRef]

PDF Image | Electrode Materials for Sodium-Ion Batteries

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)