Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 042

Materials 2020, 13, 3453 42 of 58 51. Hemalatha, H.; Jayakumar, M.; Bera, P.; Prakash, A.S. Improved electrochemical performance of Na0.67MnO2 through Ni and Mg substitution. J. Mater. Chem. A 2015, 3, 20908–20912. [CrossRef] 52. Lee, D.H.; Xu, J.; Meng, Y.S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys. Chem. Chem. Phys. 2013, 15, 3304–3312. [CrossRef] 53. Wang, H.; Yang, B.; Liao, X.Z.; Xu, J.; Yang, D.; He, Y.S.; Ma, Z.F. Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges. Electrochim. Acta 2013, 113, 200–204. [CrossRef] 54. Zhao, W.; Tanaka, A.; Momosaki, K.; Yamamoto, S.; Zhang, F.; Guo, Q.; Noguchi, H. Enhanced electrochemical performance of Ti substituted P2-Na2/3Ni1/4Mn2/4O2 cathode material for sodium ion batteries. Electrochim. Acta 2015, 170, 171–181. [CrossRef] 55. Shanmugam, R.; Lai, W. Study of transport properties and interfacial kinetics of Na2/3[Ni1/3MnxTi2/3-x]O2 (x = 0, 1/3) as Electrodes for Na-Ion Batteries. J. Electrochem. Soc. 2015, 162, 8–14. [CrossRef] 56. Tapia-Ruiz, N.; Dose, W.M.; Sharma, N.; Chen, H.; Heath, J.; Somerville, J.W.; Maitra, U.; Islam, M.S.; Bruce, P.G. High voltage structural evolution and enhanced Na-ion diffusion in P2-Na2/3Ni1/3-xMgxMn2/3O2 (0 ≤ x ≤ 0.2) cathodes from diffraction, electrochemical and ab initio studies. Energy Environ. Sci. 2018, 11, 1470–1479. [CrossRef] 57. Hemalatha, K.; Jayakumar, M.; Prakash, A.S. Influence of the manganese and cobalt content on the electrochemical performance of P2-Na0.67MnxCo1-xO2 cathodes for sodium-ion batteries. Dalton Trans. 2018, 47, 1223–1232. [CrossRef] [PubMed] 58. Fang, Y.; Chen, Z.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries. Small 2018, 14, 1703116. [CrossRef] [PubMed] 59. Hasa, I.; Buchholz, D.; Passerini, S.; Scrosati, B.; Hassoun, J. High performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 cathode for sodium-ion batteries. Adv. Energy Mater. 2014, 4, 1400083. [CrossRef] 60. Pang, W.K.; Kalluri, S.; Peterson, V.K.; Sharma, N.; Kimpton, J.; Johannessen, B.; Liu, H.K.; Dou, S.X.; Guo, Z. Interplay between electrochemistry and phase evolution of the P2-type Nax(Fe1/2Mn1/2)O2 cathode for use in sodium-ion batteries. Chem. Mater. 2015, 27, 3150–3158. [CrossRef] 61. Talaie, E.; Duffort, V.; Smith, H.L.; Fultz, B.; Nazar, L.F. Structure of the high voltage phase of layered P2-Na2/3-z(Fe1/2Mn1/2)O2 and the positive effect of Ni substitution on its stability. Energy Environ. Sci. 2015, 8, 2512–2523. [CrossRef] 62. Liu, L.; Li, X.; Bo, S.H.; Wang, Y.; Chen, H.; Twu, N.; Wu, D.; Ceder, G. High-performance P2-type Na2/3(Mn1/2Fe1/4Co1/4)O2 cathode material with superior rate capability for Na-ion batteries. Adv. Energy Mater. 2015, 5, 1500944. [CrossRef] 63. Jung, Y.H.; Christiansen, A.S.; Johnsen, R.E.; Norby, P.; Kim, D.K. In situ X-ray diffraction studies on structural changes of a P2 layered material during electrochemical desodiation/sodiation. Adv. Funct. Mater. 2015, 25, 3227–3237. [CrossRef] 64. Chu, S.; Wei, S.; Chen, Y.; Cai, R.; Liao, K.; Zhou, W.; Shao, Z. Optimal synthesis and new understanding of P2-type Na2/3Mn1/2Fe1/4Co1/4O2 as an advanced cathode material in sodium-ion batteries with improved cycle stability. Ceram. Int. 2018, 44, 5184–5192. [CrossRef] 65. Kim, D.; Kang, S.H.; Slater, M.; Rood, S.; Vaughey, J.T.; Karan, N.; Balasubramanian, M.; Johnson, C.S. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv. Energy Mater. 2011, 1, 333–336. [CrossRef] 66. Karan, N.K.; Slater, M.D.; Dogan, F.; Kim, D.; Johnson, C.S.; Balasubramanian, M. Operando structural characterization of the lithium-substituted layered sodium-ion cathode material P2-Na0.85Li0.17Ni0.21Mn0.64O2 by X-ray absorption spectroscopy. J. Electrochem. Soc. 2014, 161, A1107–A1115. [CrossRef] 67. Xu, J.; Lee, D.H.; Clément, R.J.; Yu, X.; Leskes, M.; Pell, A.J.; Pintacuda, G.; Yang, X.Q.; Grey, C.P.; Meng, Y.S. Identifying the critical role of Li substitution in P2–Nax[LiyNizMn1-y-z]O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-ion batteries. Chem. Mater. 2014, 26, 1260–1269. 68. Sehrawat, D.; Zhang, J.; Yu, D.Y.W.; Sharma, N. In situ studies of Li/Cu-doped layered P2 NaxMnO2 electrodes for sodium-ion batteries. Small Methods 2018, 3, 1800092. [CrossRef] 69. Kang, W.; Zhang, Z.; Lee, P.K.; Ng, T.W.; Li, W.; Tang, Y.; Zhang, W.; Lee, C.S.; Yu, D.Y.W. Copper substituted P2-type Na0.67CuxMn1-xO2: A stable high-power sodium-ion battery cathode. J. Mater. Chem. A 2015, 3, 22846–22852. [CrossRef]

PDF Image | Electrode Materials for Sodium-Ion Batteries

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)