logo

Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 044

Materials 2020, 13, 3453 44 of 58 90. Yang, J.; Tang, M.; Liu, H.; Chen, X.; Xu, Z.; Huang, J.; Su, Q.; Xia, Y. O3-type layered Ni-rich oxide: A high-capacity and superior-rate cathode for sodium-ion batteries. Small 2019, 15, 1905311. [CrossRef] [PubMed] 91. Guo, S.; Yu, H.; Liu, P.; Ren, Y.; Zhang, T.; Chen, M.; Ishida, M.; Zhou, H. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ. Sci. 2015, 8, 1237–1244. [CrossRef] 92. Sharma, N.; Gonzalo, E.; Pramudita, J.C.; Han, M.H.; Brand, H.E.A.; Hart, J.N.; Pang, W.K.; Guo, Z.; Rojo, T. The unique structural evolution of the O3-phase Na2/3Fe2/3Mn1/3O2 during high rate charge/discharge: A sodium-centred perspective. Adv. Funct. Mater. 2015, 25, 4994–5005. [CrossRef] 93. Zhang, C.; Gao, R.; Zheng, L.; Hao, Y.; Liu, X. New insights into the roles of Mg in improving the rate capability and cycling stability of O3-NaMn0.48Ni0.2Fe0.3Mg0.02O2 for sodium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 10819–10827. [CrossRef] 94. Chen, M.; Liu, Q.; Wang, S.W.; Wang, E.; Guo, X.; Chou, S.L. High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: Problems, progress, and key technologies. Adv. Energy Mater. 2019, 9, 1803609. [CrossRef] 95. Dai, K.; Mao, J.; Song, X.; Battaglia, V.; Liu, G. Na0.44MnO2 with very fast sodium diffusion and stable cycling synthesized via polyvinyl pyrrolidone-combustion method. J. Power Sources 2015, 285, 161–168. [CrossRef] 96. Zhan, P.; Wang, S.; Yuan, Y.; Jiao, K.; Jiao, S. Facile synthesis of nanorod-like single crystalline Na0.44MnO2 for high performance sodium-ion batteries. J. Electrochem. Soc. 2015, 162, 1028–1032. [CrossRef] 97. Zhan, P.; Jiao, K.; Wang, J.; Hu, Z.; Ma, R.; Zhu, H.; Jiao, S. Titanium-substituted Na0.44MnO2 nanorods as cathode materials for high performance sodium-ion batteries. J. Electrochem. Soc. 2015, 162, 2296–2301. [CrossRef] 98. Niu, Y.; Xu, M.; Cheng, C.; Bao, S.; Hou, J.; Liu, S.; Yi, F.; He, H.; Li, C.M. Na23.12 Fe2.44 (P2 O7 ) 2 /multi-walled carbon nanotube composite as a cathode material for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 17224–17229. [CrossRef] 99. Wang, Q.; Xu, J.; Zhang, W.; Mao, M.; Wei, Z.; Wang, L.; Cui, C.; Zhu, Y.; Ma, J. Research progress on vanadium-based cathode materials for sodium ion batteries. J. Mater. Chem. A 2018, 6, 8815–8838. [CrossRef] 100. Chao,D.;Zhu,C.;Xia,X.;Liu,J.;Zhang,X.;Wang,J.;Liang,P.;Lin,J.;Zhang,H.;Shen,Z.X.;etal.Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 2015, 15, 565–573. [CrossRef] [PubMed] 101. Zhang,Y.;Xia,X.;Liu,B.;Deng,S.;Xie,D.;Liu,Q.;Wang,Y.;Wu,J.;Wang,X.;Tu,J.Multiscalegraphene-based materials for applications in sodium ion batteries. Adv. Energy Mater. 2019, 9, 1803342. [CrossRef] 102. Wang,L.;Wei,Z.;Mao,M.;Wang,H.;Li,Y.;Ma,J.Metaloxide/graphenecompositeanodematerialsfor sodium-ion batteries. Energy Storage Mater. 2019, 16, 434–454. [CrossRef] 103. Wei,Q.;Liu,J.;Feng,W.;Sheng,J.;Tian,X.;He,L.;An,Q.;Mai,L.Hydratedvanadiumpentoxidewith superior sodium storage capacity. J. Mater. Chem. A 2015, 3, 8070–8075. [CrossRef] 104. Zhang,X.;Liu,X.;Yang,C.;Li,N.;Ji,T.;Yan,K.;Zhu,B.;Yin,J.;Zhao,J.;Li,Y.AV2O5-nanosheets-coated hard carbon fiber fabric as high-performance anode for sodium ion battery. Surf. Coat. Technol. 2019, 358, 661–666. [CrossRef] 105. Kim,J.;Seo,D.H.;Kim,H.;Park,I.;Yoo,J.K.;Jung,S.K.;Park,Y.U.;Goddard,W.A.;Kang,K.Unexpected discovery of low-cost maricite NaFePO4 as an electrode for Na-ion batteries. Energy Environ. Sci. 2015, 8, 540–545. [CrossRef] 106. Zhang, X.; Rui, X.; Chen, D.; Tan, H.; Yang, D.; Huang, S.; Yu, Y. Na3 V2 (PO4 )3 : An advanced cathode for sodium-ion batteries. Nanoscale 2019, 11, 2556–2576. [CrossRef] [PubMed] 107. Fang, Y.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 2015, 27, 5895–5900. [CrossRef] [PubMed] 108. Rui, X.; Sun, W.; Wu, C.; Yu, Y.; Yan, Q. An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv. Mater. 2015, 27, 6670–6676. [CrossRef] 109. Guo, D.; Qin, J.; Yin, Z.; Bai, J.; Sun, Y.K.; Cao, M. Achieving high mass loading of Na3 V2 (PO4 )3 @carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 2018, 45, 136–147. [CrossRef]

PDF Image | Electrode Materials for Sodium-Ion Batteries

electrode-materials-sodium-ion-batteries-044

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP