logo

Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 045

Materials 2020, 13, 3453 45 of 58 110. Wang,E.;Chen,M.;Liu,X.;Liu,Y.;Guo,H.;Wu,Z.;Xiang,W.;Zhong,B.;Guo,X.;Chou,S.;etal.Organic cross-linker enabling a 3D Porous skeleton–supported Na3V2(PO4)3/carbon composite for high power sodium-ion battery cathode. Small Methods 2018, 3, 1800169. [CrossRef] 111. Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Guo, X.; Wang, E.; Gu, Q.; Hu, Z.; Indris, S.; Wang, X.L.; et al. Development and investigation of a NASICON-type high-voltage cathode material for high-power sodium ion batteries. Angew. Chem. Int. Ed. 2020, 59, 2449–2456. [CrossRef] 112. Gao, H.; Seymour, I.D.; Xin, S.; Xue, L.; Henkelman, G.; Goodenough, J.B. Na3 MnZr(PO4 )3 : A high-voltage cathode for sodium batteries. J. Am. Chem. Soc. 2018, 140, 18192–18199. [CrossRef] 113. Zhu, T.; Hu, P.; Wang, X.; Liu, Z.; Luo, W.; Owusu, K.A.; Cao, W.; Shi, C.; Li, J.; Zhou, L.; et al. Realizing three-electron redox reactions in NASICON-structured Na3MnTi(PO4)3 for sodium-ion batteries. Adv. Energy Mater. 2019, 9, 1803436. [CrossRef] 114. Hwang, J.Y.; Myung, S.T.; Sun, Y.K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [CrossRef] [PubMed] 115. Chen, M.; Chen, L.; Hu, Z.; Liu, Q.; Zhang, B.; Hu, Y.; Gu, Q.; Wang, J.L.; Wang, L.Z.; Guo, X.; et al. Carbon-coated Na3.32Fe2.34(P2O7)2 cathode material for high-rate and long-life sodium-ion batteries. Adv. Mater. 2017, 29, 1605535. [CrossRef] 116. Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Chen, W.; Wang, E.; Hu, Z.; Gu, Q.; Wang, X.; Indris, S.; et al. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat. Commun. 2019, 10, 1480. [CrossRef] [PubMed] 117. Huang, W.; Li, B.; Saleem, M.F.; Wu, X.; Li, J.; Lin, J.; Xia, D.; Chu, W.; Wu, Z. Self-assembled alluaudite Na2Fe3-xMnx(PO4)3 micro/nanocompounds for sodium-ion battery electrodes: A new insight into their electronic and geometric structure. Chem. Eur. J. 2015, 21, 851–860. [CrossRef] [PubMed] 118. Huang,W.;Zhou,J.;Li,B.;An,L.;Cui,P.;Xia,W.;Song,L.;Xia,D.;Chu,W.;Wu,Z.Anewroutetoward improved sodium ion batteries: A multifunctional fluffy Na0.67FePO4/CNT nanocactus. Small 2015, 11, 2170–2176. [CrossRef] [PubMed] 119. Zou,H.;Li,S.;Wu,X.;McDonald,M.J.;Yang,Y.Spray-dryingsynthesisofpureNa2CoPO4Fascathode material for sodium ion batteries. ECS Electrochem. Lett. 2015, 4, 53–55. [CrossRef] 120. Song,W.;Cao,X.;Wu,Z.;Chen,J.;Zhu,Y.;Hou,H.;Lan,Q.;Ji,X.Investigationofthesodiumionpathway and cathode behavior in Na3V2(PO4)2F3 combined via a first principles calculation. Langmuir 2014, 30, 12438–12446. [CrossRef] 121. Yuvaraj,S.;Oh,W.;Yoon,W.S.Recentprogressonsodiumvanadiumfluorophosphatesforhighvoltage sodium-ion battery application. J. Electrochem. Sci. Technol. 2019, 10, 1–13. 122. Liu, Q.; Meng, X.; Wei, Z.; Wang, D.; Gao, Y.; Wei, F.; Du, Y.; Chen, G. Core/double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 31709–31715. [CrossRef] 123. Yang,X.;Wang,X.;Zhen,W.ReversibleNa+-extraction/insertioninnitrogen-dopedgraphene-encapsulated Na3V2(PO4)2F3@C electrode for advanced Na-ion battery. Ceram. Int. 2020, 46, 9170–9175. [CrossRef] 124. Gu, Z.Y.; Guo, J.Z.; Sun, Z.H.; Zhao, X.X.; Li, W.H.; Yang, X.; Liang, H.J.; Zhao, C.D.; Wu, X.L. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci. Bull. 2020, 65, 702–710. [CrossRef] 125. Yi, H.; Ling, M.; Xu, W.; Li, X.; Zheng, Q.; Zhang, H. VSC-doping and VSU-doping of Na3 V2-x Tix (PO4 )2 F3 compounds for sodium ion battery cathodes: Analysis of electrochemical performance and kinetic properties. Nano Energy 2018, 47, 340–352. [CrossRef] 126. Yao, Y.; Zhang, L.; Gao, Y.; Chen, G.; Wang, C.; Du, F. Assembly of Na3V2(PO4)2F3@C nanoparticles in reduced graphene oxide enabling superior Na+ storage for symmetric sodium batteries. RSC Adv. 2018, 8, 2958–2962. [CrossRef] 127. Zhao, J.; Gao, Y.; Liu, Q.; Meng, X.; Chen, N.; Wang, C.; Du, F.; Chen, G. High rate capability and enhanced cyclability of Na3V2(PO4)2F3 cathode by in situ coating of carbon nanofibers for sodium-ion battery applications. Chem. Eur. J. 2018, 24, 2913–2919. [CrossRef] [PubMed] 128. Shen, C.; Long, H.; Wang, G.; Lu, W.; Shao, L.; Xie, K. Na3 V2 (PO4 )2 F3 @C dispersed within carbon nanotube frameworks as a high tap density cathode for high-performance sodium-ion batteries. J. Mater. Chem. A 2018, 6, 6007–6014. [CrossRef]

PDF Image | Electrode Materials for Sodium-Ion Batteries

electrode-materials-sodium-ion-batteries-045

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP