Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 046

Materials 2020, 13, 3453 46 of 58 129. Qi, Y.; Mu, L.; Zhao, J.; Hu, Y.S.; Liu, H.; Dai, S. Superior Na-storage performance of low-temperature-synthesized Na3(VO1-xPO4)2F1+2x (0 ≤ x ≤ 1) nanoparticles for Na-ion batteries. Angew. Chem. Int. Ed. 2015, 54, 9911–9916. [CrossRef] [PubMed] 130. Wang, Y.; Hou, B.; Guo, J.; Ning, Q.; Pang, W.; Wang, J.; Lv, C.; Wu, X. An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv. Energy Mater. 2018, 8, 1703252. [CrossRef] 131. Deng, B.; Yue, N.; Dong, H.; Gui, Q.; Xiao, L.; Liu, J. Surface-assembled highly flexible Na3(VOPO4)2F nanocube cathode for high-rate binder-free Na-ion batteries. Chin. Chem. Lett. 2020. [CrossRef] 132. Barpanda,P.;Oyama,G.;Nishimura,S.I.;Chung,S.C.;Yamada,A.A3.8-Vearth-abundantsodiumbattery electrode. Nat. Commun. 2014, 5, 4358. [CrossRef] 133. Oyama,G.;Nishimura,S.;Suzuki,Y.;Okubo,M.;Yamada,A.Off-stoichiometryinalluaudite-typesodium iron sulfate Na2+2xFe2-x(SO4)3 as an advanced sodium battery cathode material. ChemElectroChem 2015, 2, 1019–1023. [CrossRef] 134. Wong,L.L.;Chen,H.M.;Adams,S.Sodium-iondiffusionmechanismsinthelowcosthighvoltagecathode material Na2+dFe2-d/2(SO4)3. Phys. Chem. Chem. Phys. 2015, 17, 9186–9193. [CrossRef] [PubMed] 135. Wang, W.; Liu, X.; Xu, Q.; Liu, H.; Wang, Y.G.; Xia, Y.; Cao, Y.; Ai, X. A high voltage cathode of Na2+2xFe2-x(SO4)3 intensively protected by nitrogen-doped graphene with improved electrochemical performance of sodium storage. J. Mater. Chem. A 2018, 6, 4354–4364. [CrossRef] 136. Dwibedi, D.; Araujo, R.B.; Chakraborty, S.; Shanbogh, P.P.; Sundaram, N.G.; Ahuja, R.; Barpanda, P. Na2.44Mn1.79(SO4)3: A new member of the alluaudite family of insertion compounds for sodium ion batteries. J. Mater. Chem. A 2015, 3, 18564–18571. [CrossRef] 137. Araujo,R.B.;Islam,M.S.;Chakraborty,S.;Ahuja,R.Predictingelectrochemicalpropertiesandionicdiffusion in Na2+2xMn2-x(SO4)3: Crafting a promising high voltage cathode material. J. Mater. Chem. A 2016, 4, 451–457. [CrossRef] 138. Wei, S.; de Boisse, B.M.; Oyama, G.; Nishimura, S.; Yamada, A. Synthesis and electrochemistry of Na2.5(Fe1-yMny)1.75(SO4)3 solid solutions for Na-ion batteries. ChemElectroChem 2016, 3, 209–213. [CrossRef] 139. Meng, Y.; Li, Q.; Yu, T.; Zhang, S.; Deng, C. Architecture–property relationships of zero-, one- and two-dimensional carbon matrix incorporated Na2Fe(SO4)2·2H2O/C. CrystEngComm 2016, 18, 1645–1654. [CrossRef] 140. Singh,P.;Shiva,K.;Celio,H.;Goodenough,J.B.Eldfellite,NaFe(SO4)2:Anintercalationcathodehostfor low-cost Na-ion batteries. Energy Environ. Sci. 2015, 8, 3000–3005. [CrossRef] 141. Gnanavel,M.;Lebedev,O.I.;Bazin,P.;Raveau,B.;Pralong,V.Reversibletransformationfromamorphous Na3Fe3(SO4)2(OH)6 to crystallized NaFe3(SO4)2(OH)6 jarosite-type hydroxysulfate. Solid State Ion. 2015, 278, 38–42. [CrossRef] 142. Zhang,Y.;Yu,H.;Zhou,H.Two-electronmigrationorthosilicatecathodematerialsforNa-ionbatteries.J. Mater. Chem. A 2014, 2, 11574–11577. [CrossRef] 143. Liu,X.;Tang,L.;Xu,Q.;Liu,H.;Wang,Y.UltrafastandultrastablehighvoltagecathodeofNa2+2xFe2-x(SO4)3 microsphere scaffolded by graphene for sodium ion batteries. Electrochim. Acta 2019, 296, 345–354. [CrossRef] 144. Barpanda,P.;Ye,T.;Nishimura,S.;Chung,S.C.;Yamada,Y.;Okubo,M.;Zhou,H.;Yamada,A.Sodiumiron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochem. Commun. 2012, 24, 116–119. [CrossRef] 145. Kim,H.;Shakoor,R.A.;Park,C.;Lim,S.Y.;Kim,J.-S.;Jo,Y.N.;Cho,W.;Miyasaka,K.;Kahraman,R.;Jung,Y.; et al. Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: A combined experimental and theoretical study. Adv. Funct. Mater. 2013, 23, 1147–1155. [CrossRef] 146. Chen,C.Y.;Matsumoto,K.;Nohira,T.;Hagiwara,R.;Orikasa,Y.;Uchimoto,Y.PyrophosphateNa2FeP2O7as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid. J. Power Sources 2014, 246, 783–787. [CrossRef] 147. Ha, K.H.; Woo, S.H.; Mok, D.; Choi, N.S.; Park, Y.; Oh, S.M.; Kim, Y.; Kim, J.; Lee, J.; Nazar, L.F.; et al. Na4-aFe2+a/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5Mn0.5, Mn): A promising sodium ion cathode for Na-ion batteries. Adv. Energy Mater. 2013, 3, 770–776. [CrossRef] 148. Niu, Y.; Xu, M.; Bao, S.J.; Li, C.M. Porous graphene to encapsulate Na6.24 Fe4.88 (P2 O7 )4 as composite cathode materials for Na-ion batteries. Chem. Commun. 2015, 51, 13120–13122. [CrossRef]

PDF Image | Electrode Materials for Sodium-Ion Batteries

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)