Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 047

Materials 2020, 13, 3453 47 of 58 149. Longoni, G.; Wang, J.E.; Jung, Y.H.; Kim, D.K.; Mari, C.M.; Ruffo, R. The Na2FeP2O7-carbon nanotubes composite as high rate cathode material for sodium ion batteries. J. Power Sources 2016, 302, 61–69. [CrossRef] 150. Barpanda,P.;Liu,G.;Ling,C.D.;Tamaru,M.;Avdeev,M.;Chung,S.C.;Yamada,Y.;Yamada,A.Na2FeP2O7: A safe cathode for rechargeable sodium-ion batteries. Chem. Mater. 2013, 25, 3480–3487. [CrossRef] 151. Jiang, K.; Xu, S.; Guo, S.; Zhang, X.; Zhang, X.; Qiao, Y.; Fang, T.; Wang, P.; He, P.; Zhou, H. A phase-transition-free cathode for sodium-ion batteries with ultralong cycle life. Nano Energy 2018, 52, 88–94. [CrossRef] 152. Barpanda, P.; Liu, G.; Avdeev, M.; Yamada, A. t-Na2 (VO)P2 O7 : A 3.8 V pyrophosphate insertion material for sodium-ion batteries. ChemElectroChem 2014, 1, 1488–1491. [CrossRef] 153. Kim, J.; Park, I.; Kim, H.; Park, K.Y.; Park, Y.U.; Kang, K. Tailoring a new 4 V-class cathode material for Na-ion batteries. Adv. Energy Mater. 2016, 6, 1502147. [CrossRef] 154. Kim, H.; Yoon, G.; Park, I.; Park, K.Y.; Lee, B.; Kim, J.; Park, Y.U.; Jung, S.K.; Lim, H.D.; Ahn, D.; et al. Anomalous Jahn-Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries. Energy Environ. Sci. 2015, 8, 3325–3335. [CrossRef] 155. Wood,S.M.;Eames,C.;Kendrick,E.;Islam,M.S.Sodiumiondiffusionandvoltagetrendsinphosphates Na4M3(PO4)2P2O7 (M = Fe, Mn, Co, Ni) for possible high-rate cathodes. J. Phys. Chem. C 2015, 119, 15935–15941. [CrossRef] 156. Yuan, T.; Wang, Y.; Zhang, J.; Pu, X.; Ai, X.; Chen, Z.; Yang, H.; Cao, Y. 3D graphene decorated Na4Fe3(PO4)2P2O7 microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy 2019, 56, 160–168. [CrossRef] 157. Lim,S.Y.;Kim,H.;Chung,J.;Lee,J.H.;Kim,B.G.;Choi,J.J.;Chung,K.Y.;Cho,W.;Kim,S.J.;Goddard,W.A.; et al. Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery. Proc. Natl. Acad. Sci. USA 2014, 111, 599–604. [CrossRef] [PubMed] 158. Deng, C.; Zhang, S. 1D nanostructured Na7 V4 (P2 O7 )4 (PO4 ) as high-potential and superior-performance cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 9111–9117. [CrossRef] [PubMed] 159. Chen, H.; Hao, Q.; Zivkovic, O.; Hautier, G.; Du, L.S.; Tang, Y.; Hu, Y.Y.; Ma, X.; Grey, C.P.; Ceder, G. Sidorenkite (Na3MnPO4CO3): A new intercalation cathode material for Na-ion batteries. Chem. Mater. 2014, 25, 2777–2786. [CrossRef] 160. Huang,W.;Zhou,J.;Li,B.;Ma,J.;Tao,S.;Xia,D.;Chu,W.;Wu,Z.DetailedinvestigationofNa2.24Fe(CO3)(PO4) as a cathode material for Na-ion batteries. Sci. Rep. 2014, 4, 4188. [CrossRef] 161. Song,J.;Wang,L.;Lu,Y.;Liu,J.;Guo,B.;Xiao,P.;Lee,J.J.;Yang,X.Q.;Henkelman,G.;Goodenough,J.B. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 2015, 137, 2658–2664. [CrossRef] 162. Wang,L.;Lu,Y.;Liu,J.;Xu,M.;Cheng,J.;Zhang,D.;Goodenough,J.B.Asuperiorlow-costcathodefora Na-ion battery. Angew. Chem. Int. Ed. 2013, 52, 1964–1967. [CrossRef] 163. Lee,H.W.;Wang,R.Y.;Pasta,M.;Lee,S.W.;Liu,N.;Cui,Y.Manganesehexacyanomanganateopenframework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 2014, 5, 5280. [CrossRef] 164. Wang,L.;Song,J.;Qiao,R.;Wray,L.A.;Hossain,M.A.;Chuang,Y.D.;Yang,W.;Lu,Y.;Evans,D.;Lee,J.J.; et al. Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 2015, 137, 2548–2554. [CrossRef] [PubMed] 165. Wang,B.;Han,Y.;Wang,X.;Bahlawane,N.;Pan,H.;Yan,M.;Jiang,Y.Prussianblueanalogsforrechargeable batteries. iScience 2018, 3, 110–133. [CrossRef] [PubMed] 166. Qian,J.;Wu,C.;Cao,Y.;Ma,Z.;Huang,Y.;Ai,X.;Yang,H.Prussianbluecathodematerialsforsodium-ion batteries and other ion batteries. Adv. Energy. Mater. 2018, 8, 1702619. [CrossRef] 167. Wang,W.;Gang,Y.;Hu,Z.;Yan,Z.;Li,W.;Li,Y.;Gu,Q.F.;Wang,Z.;Chou,S.L.;Liu,H.K.;etal.Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat. Commun. 2020, 11, 980. [CrossRef] [PubMed] 168. Yang,D.;Xu,J.;Liao,X.Z.;Wang,H.;He,Y.S.;Ma,Z.F.Prussianbluewithoutcoordinatedwaterasasuperior cathode for sodium-ion batteries. Chem. Commun. 2015, 51, 8181–8184. [CrossRef] [PubMed] 169. Prabakar, S.J.R.; Jeong, J.; Pyo, M. Highly crystalline Prussian blue/graphene composites for high-rate performance cathodes in Na-ion batteries. RSC Adv. 2015, 5, 37545–37552. [CrossRef]

PDF Image | Electrode Materials for Sodium-Ion Batteries

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)