Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 048

Materials 2020, 13, 3453 48 of 58 170. You,Y.;Yu,X.;Yin,Y.;Nam,K.W.;Guo,Y.G.SodiumironhexacyanoferratewithhighNacontentasaNa-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128. [CrossRef] 171. Tang,X.;Liu,H.;Su,D.;Notten,P.H.L.;Wang,G.Hierarchicalsodium-richPrussianbluehollownanospheres as high-performance cathode for sodium-ion batteries. Nano Res. 2018, 11, 3979–3990. [CrossRef] 172. Xie, M.; Xu, M.; Huang, Y.; Chen, R.; Zhang, X.; Li, L.; Wu, F. Na2 Nix Co1-x Fe(CN)6 : A class of Prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries. Electrochem. Commun. 2015, 59, 91–94. [CrossRef] 173. Wu,X.;Wu,C.;Wei,C.;Hu,L.;Qian,J.;Cao,Y.;Ai,X.;Wang,J.;Yang,H.HighlycrystallizedNa2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 5393–5399. [CrossRef] 174. Yang, D.; Xu, J.; Liao, X.Z.; He, Y.S.; Liu, H.; Ma, Z.F. Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries. Chem. Commun. 2014, 50, 13377–13380. [CrossRef] [PubMed] 175. Ge,P.;Li,S.;Shuai,H.;Xu,W.;Tian,Y.;Yang,L.;Zou,G.;Hou,H.;Ji,X.Ultrafastsodiumfullbatteriesderived from X-Fe (X = Co, Ni, Mn) Prussian blue analogs. Adv. Mater. 2019, 31, 1806092. [CrossRef] [PubMed] 176. Tan,H.;Chen,D.;Rui,X.;Yu,Y.Peeringintoalloyanodesforsodium-ionbatteries:Currenttrends,challenges, and opportunities. Adv. Func. Mater. 2019, 29, 1808745. [CrossRef] 177. Yoon,G.;Seo,D.H.;Ku,K.;Kim,J.;Jeon,S.;Kang,K.Factorsaffectingtheexfoliationofgraphiteintercalation compounds for graphene synthesis. Chem. Mater. 2015, 27, 2067–2073. [CrossRef] 178. Jache,B.;Adelhelm,P.Useofgraphiteasahighlyreversibleelectrodewithsuperiorcyclelifeforsodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 2014, 53, 10169–10173. [CrossRef] 179. Kim,H.;Hong,J.;Park,Y.U.;Kim,J.;Hwang,I.;Kang,K.Sodiumstoragebehaviorinnaturalgraphiteusing ether-based electrolyte systems. Adv. Funct. Mater. 2015, 25, 534–541. [CrossRef] 180. Zhu,Z.;Cheng,F.;Hu,Z.;Niu,Z.;Chen,J.Highlystableandultrafastelectrodereactionofgraphitefor sodium ion batteries. J. Power Sources 2015, 293, 626–634. [CrossRef] 181. Cohn,A.P.;Share,K.;Carter,R.;Oakes,L.;Pint,C.L.Ultrafastsolvent-assistedsodiumionintercalationinto highly crystalline few-layered graphene. Nano. Lett. 2016, 16, 543–548. [CrossRef] 182. Hasa,I.;Dou,X.;Buchholz,D.;Shao-Horn,Y.;Yang,H.;Hassoun,J.;Passerini,S.;Scosati,B.Asodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. J. Power Sources 2016, 310, 26–31. [CrossRef] 183. Seidl,L.;Bucher,N.;Chu,E.;Hartung,S.;Martens,S.;Schneider,O.;Stimming,U.Intercalationofsolvated Na-ions into graphite. Energy Environ. Sci. 2017, 10, 1631–1642. [CrossRef] 184. Kim, H.; Lim, K.; Yoon, G.; Park, J.H.; Ku, K.; Lim, H.D.; Sung, Y.E.; Kang, K. Exploiting lithium-ether co-intercalation in graphite for high-power lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1700418. [CrossRef] 185. Xu,Z.L.;Yoon,G.;Park,K.Y.;Tamwattana,O.;Kim,S.J.;Seong,W.M.;Kang,K.Tailoringsodiumintercalation in graphite for high energy and power sodium ion batteries. Nat. Commun. 2019, 10, 2598. [CrossRef] [PubMed] 186. Xu,Z.L.;Park,J.;Yoon,G.;Kim,H.;Kang,K.Graphiticcarbonmaterialsforadvancedsodium-ionbatteries. Small Methods 2019, 3, 1800227. [CrossRef] 187. Lin,Q.;Zhang,J.;Kong,D.;Cao,T.;Zhang,S.W.;Chen,X.;Tao,Y.;Lv,W.;Kang,F.;Yang,Q.H.Deactivating defects in graphenes with Al2O3 nanoclusters to produce long-life and high-rate sodium-ion batteries. Adv. Energy Mater. 2019, 9, 1803078. [CrossRef] 188. Komaba,S.;Murata,W.;Ishikawa,T.;Yabuuchi,N.;Ozeki,T.;Nakayama,T.;Ogata,A.;Gotoh,K.;Fujiwara,K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867. [CrossRef] 189. Irisarri,E.;Ponrouch,A.;Palacin,M.R.Review:Hardcarbonnegativeelectrodematerialsforsodium-ion batteries. J. Electrochem. Soc. 2015, 162, 2476–2482. [CrossRef] 190. Xiao,B.;Rojo,T.;Li,X.Hardcarbonassodium-ionbatteryanodes:Progressandchallenges.ChemSusChem 2019, 12, 133–144. [CrossRef]

PDF Image | Electrode Materials for Sodium-Ion Batteries

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)