Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 049

Materials 2020, 13, 3453 49 of 58 191. Xiao,L.;Cao,Y.;Henderson,W.A.;Sushko,M.L.;Shao,Y.;Xiao,J.;Wang,W.;Engelhard,M.H.;Nie,Z.;Liu,J. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 2016, 19, 279–288. [CrossRef] 192. Tang,K.;Fu,L.;White,R.J.;Yu,L.;Titirici,M.;Antonietti,M.;Maier,J.Hollowcarbonnanosphereswith superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877. [CrossRef] 193. Cao,Y.;Xiao,L.;Sushko,M.L.;Wang,W.;Schwenzer,B.;Xiao,J.;Nie,Z.;Saraf,L.V.;Yang,Z.;Liu,J.Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787. [CrossRef] 194. Zhou,X.;Guo,Y.G.Highlydisorderedcarbonasasuperioranodematerialforroom-temperaturesodium-ion batteries. ChemElectroChem 2014, 1, 83–86. [CrossRef] 195. Chen,T.Q.;Liu,Y.;Pan,L.K.;Lu,T.;Yao,Y.F.;Sun,Z.;Chua,D.H.C.;Chen,Q.Electrospuncarbonnanofibers as anode materials for sodium ion batteries with excellent cycle performance. J. Mater. Chem. A 2014, 2, 4117–4121. [CrossRef] 196. Wang, H.G.; Yuan, S.; Ma, D.L.; Zhang, X.B.; Yan, J.M. Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical performance. Energy Environ. Sci. 2015, 8, 1660–1681. [CrossRef] 197. Hong,K.;Qie,L.;Zeng,R.;Yi,Z.;Zhang,W.;Wang,D.;Yin,W.;Wu,C.;Fan,Q.;Zhang,W.;etal.Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J. Mater. Chem. A 2014, 2, 12733–12738. [CrossRef] 198. Wu, L.; Buchholz, D.; Vaalma, C.; Giffin, G.A.; Passerini, S. Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries. ChemElectroChem 2016, 3, 292–298. [CrossRef] 199. Wang,H.G.;Wu,Z.;Meng,F.L.;Ma,D.L.;Huang,X.L.;Wang,L.B.;Zhang,X.B.Nitrogen-dopedporous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 2013, 6, 56–60. [CrossRef] [PubMed] 200. Wang,Z.;Qie,L.;Yuan,L.;Zhang,W.;Hu,X.;Huang,Y.FunctionalizedN-dopedinterconnectedcarbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 2013, 55, 328–334. [CrossRef] 201. Fu,L.;Tang,K.;Song,K.;vanAken,P.A.;Yu,Y.;Maier,J.Nitrogendopedporouscarbonfibersasanode materials for sodium ion batteries with excellent rate performance. Nanoscale 2014, 6, 1384–1389. [CrossRef] 202. Liu, H.; Jia, M.; Sun, N.; Cao, B.; Chen, R.; Zhu, Q.; Wu, F.; Qiao, N.; Xu, B. Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 27124–27130. [CrossRef] 203. Yang,T.;Qian,T.;Wang,M.;Shen,X.;Xu,N.;Sun,Z.;Yan,C.Asustainableroutefrombiomassbyproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv. Mater. 2016, 28, 539–545. [CrossRef] 204. Yang,F.;Zhang,Z.;Du,K.;Zhao,X.;Chen,W.;Lai,Y.;Li,J.Dopaminederivednitrogen-dopedcarbonsheets as anode materials for high-performance sodium ion batteries. Carbon 2015, 91, 88–95. [CrossRef] 205. Ye, J.; Zhao, H.; Song, W.; Wang, N.; Kang, M.; Li, Z. Enhanced electronic conductivity and sodium-ion adsorption in N/S co-doped ordered mesoporous carbon for high-performance sodium-ion battery anode. J. Power Sources 2019, 412, 604–614. [CrossRef] 206. Chen,W.;Wan,M.;Xiong,X.;Yu,F.;Huang,Y.Heteroatom-dopedcarbonmaterials:Synthesis,mechanism, and application for sodium-ion batteries. Small 2019, 3, 1800323. [CrossRef] 207. Zhao,G.;Yu,D.;Zhang,H.;Sun,F.;Li,J.;Zhu,L.;Sun,L.;Yu,M.;Besenbacher,F.;Sun,Y.Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries. Nano Energy 2020, 67, 104219. [CrossRef] 208. Yun,Y.S.;Park,K.Y.;Lee,B.;Cho,S.Y.;Park,Y.U.;Hong,S.J.;Kim,B.H.;Gwon,H.;Kim,H.;Lee,S.;etal. Sodium-ion storage in pyroprotein-based carbon nanoplates. Adv. Mater. 2015, 27, 6914–6921. [CrossRef] [PubMed] 209. Bommier,C.;Surta,T.W.;Dolgos,M.;Ji,X.NewmechanisticinsightsonNa-ionstorageinnon-graphitizable carbon. Nano Lett. 2015, 15, 5888–5892. [CrossRef] 210. Bai, P.; He, Y.; Zou, X.; Zhao, X.; Xiong, P.; Xu, Y. Elucidation of the sodium-storage mechanism in hard carbons. Adv. Energy Mater. 2018, 8, 1703217. [CrossRef] 211. Tsai,P.C.;Chung,S.C.;Lin,S.K.;Yamada,A.Abinitiostudyofsodiumintercalationintodisorderedcarbon. J. Mater. Chem. A 2015, 3, 9763–9768. [CrossRef]

PDF Image | Electrode Materials for Sodium-Ion Batteries

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)