Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 050

Materials 2020, 13, 3453 50 of 58 212. Ding,C.;Nohira,T.;Hagiwara,R.;Fukunaga,A.;Sakai,S.;Nitta,K.Electrochemicalperformanceofhard carbon negative electrodes for ionic liquid-based sodium ion batteries over a wide temperature range. Electrochim. Acta 2015, 176, 344–349. [CrossRef] 213. Li, Z.; Jian, Z.; Wang, X.; Rodriguez-Perez, I.A.; Bommier, C.; Ji, X. Hard carbon anodes of sodium-ion batteries: Undervalued rate capability. Chem. Commun. 2017, 53, 2610–2613. [CrossRef] 214. Fei, S.; Hongli, Z.; Wei, L.; Jiayu, W.; Lihui, Z.; Jiaqi, D.; Bin, Z.; Xiaogang, H.; Kun, F.; Liangbing, H. Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 23291–23296. 215. Balakumar, K.; Sathish, R.; Kalaiselvi, N. Exploration of microporous bio-carbon scaffold for efficient utilization of sulfur in lithium-sulfur system. Electrochim. Acta 2016, 209, 171–182. 216. Titirici, M.M.; White, R.J.; Brun, N.; Budarin, V.L.; Su, D.S.; Monte, F.D.; Clark, J.H.; MacLachlan, M.J. Sustainable carbon materials. Chem. Soc. Rev. 2015, 44, 250–290. [CrossRef] [PubMed] 217. Mullaivananathan, V.; Packiyalakshmi, P.; Kalaiselvi, N. Multifunctional bio carbon: A coir pith waste derived electrode for extensive energy storage device applications. RSC Adv. 2017, 7, 23663–23670. [CrossRef] 218. Vadivazhagan,M.;Parameswaran,P.;Mani,U.;Nallathamby,K.Waste-drivenbio-carbonelectrodematerial for Na-ion storage applications. ACS Sustain. Chem. Eng. 2018, 6, 13915–13923. [CrossRef] 219. Hou,H.;Banks,C.E.;Jing,M.;Zhang,Y.;Ji,X.Carbonquantumdotsandtheirderivative3Dporouscarbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861–7866. [CrossRef] [PubMed] 220. Luo,W.;Jian,Z.;Xing,Z.;Wang,W.;Bommier,C.;Lerner,M.M.;Ji,X.Electrochemicallyexpandablesoft carbon as anodes for Na-ion batteries. ACS Cent. Sci. 2015, 1, 516–522. [CrossRef] 221. Fang,S.;Bresser,D.;Passerini,S.Transitionmetaloxideanodesforelectrochemicalenergystorageinlithium- and sodium-ion batteries. Adv. Energy Mater. 2020, 10, 1902485. [CrossRef] 222. Wu, Y.; Yu, Y. 2D material as anode for sodium ion batteries: Recent progress and perspectives. Energy Storage Mater. 2019, 16, 323–343. [CrossRef] 223. Su,D.;Dou,S.;Wang,G.AnataseTiO2:BetteranodematerialthanamorphousandrutilephasesofTiO2for Na-ion batteries. Chem. Mater. 2015, 27, 6022–6029. [CrossRef] 224. Kim,K.T.;Ali,G.;Chung,K.Y.;Yoon,C.S.;Yashiro,H.;Sun,Y.K.;Lu,J.;Amine,K.;Myung,S.T.Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 2014, 14, 416–422. [CrossRef] [PubMed] 225. Gonzalez,J.R.;Alcantara,R.;Nacimiento,F.;Ortiz,G.F.;Tirado,J.L.Microstructureoftheepitaxialfilmof anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium. CrystEngComm 2014, 16, 4602–4609. [CrossRef] 226. Wu,L.;Bresser,D.;Buchholz,D.;Giffin,G.A.;Castro,C.R.;Ochel,A.;Passerini,S.Unfoldingthemechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142. [CrossRef] 227. Bi,Z.;Paranthaman,M.P.;Menchhofer,P.A.;Dehoff,R.R.;Bridges,C.A.;Chi,M.;Guo,B.;Sun,X.G.;Dai,S. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J. Power Sources 2013, 222, 461–466. [CrossRef] 228. Zhou,T.;Zheng,Y.;Gao,H.;Min,S.;Li,S.;Liu,H.K.;Guo,Z.Surfaceengineeringanddesignstrategyfor surface-amorphized TiO2@graphene hybrids for high power Li-ion battery electrodes. Adv. Sci. 2015, 2, 1500027. [CrossRef] [PubMed] 229. Zheng,Y.;Zhou,T.;Zhang,C.;Mao,J.;Liu,H.;Gu,Z.BoostedchargetransferinSnS/SnO2heterostructures: Toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 2016, 55, 3408–3413. [CrossRef] 230. Yu,M.;Cheng,X.;Zeng,Y.;Wang,Z.;Tong,Y.;Lu,X.;Yang,S.Dual-dopedmolybdenumtrioxidenanowires: A bifunctional anode for fiber-shaped asymmetric supercapacitors and microbial fuel cells. Angew. Chem. Int. Ed. 2016, 55, 6762–6766. [CrossRef] 231. Ni,J.;Fu,S.;Yuan,Y.;Ma,L.;Jiang,Y.;Li,L.;Lu,J.BoostingsodiumstorageinTiO2nanotubearraysthrough surface phosphorylation. Adv. Mater. 2018, 30, 1704337. [CrossRef] 232. Wei, X.; Li, W.; Shi, J.A.; Gu, L.; Yu, Y. FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mat. Interfaces 2015, 7, 27804–27809. [CrossRef] 233. Liu,S.;Luo,Z.;Tian,G.;Zhu,M.;Cai,Z.;Pan,A.;Liang,S.TiO2nanorodsgrownoncarbonfiberclothas binder-free electrode for sodium-ion batteries and flexible sodium-ion capacitors. J. Power Sources 2017, 363, 284–290. [CrossRef]

PDF Image | Electrode Materials for Sodium-Ion Batteries

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)