logo

Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 054

Materials 2020, 13, 3453 54 of 58 296. Li, S.; Ge, P.; Jiang, F.; Shuai, H.; Xu, W.; Jiang, Y.; Zhang, Y.; Hu, J.; Hou, H.; Ji, X. The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: The influences of morphology structure, phase evolution and interface property. Energy Storage Mater. 2019, 16, 267–280. [CrossRef] 297. Wang, H.; Liang, Y.; Li, Y.; Dai, H. Co1-xS-graphene hybrid: A high-performance metal chalcogenide electrocatalyst for oxygen reduction. Angew. Chem. Int. Ed. 2011, 50, 10969–10972. [CrossRef] [PubMed] 298. Zhao,Y.;Pang,Q.;Wei,Y.;Wei,L.;Ju,Y.;Zou,B.;Gao,Y.;Chen,G.Co9S8/Coasahigh-performanceanode for sodium-ion batteries with an ether-based electrolyte. ChemSusChem 2017, 10, 4778–4785. [CrossRef] [PubMed] 299. Hu,X.;Jia,J.;Wang,G.;Chen,J.;Zhan,H.;Wen,Z.Reliableandgeneralroutetoinverseopalstructured nanohybrids of carbon-confined transition metal sulfides quantum dots for high-performance sodium storage. Adv. Energy Mater. 2018, 8, 1801452. [CrossRef] 300. Zhong, G.; Liu, D.; Zhang, J. The application of ZIF-67 and its derivatives: Adsorption, separation, electrochemistry and catalysts. J. Mater. Chem. A 2018, 6, 1887–1899. [CrossRef] 301. Chen,Z.;Wu,R.;Liu,M.;Wang,H.;Xu,H.;Guo,Y.;Song,Y.;Fang,F.;Yu,X.;Sun,D.Generalsynthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702046. [CrossRef] 302. Wang,Y.;Kang,W.;Cao,D.;Zhang,M.;Kang,Z.;Xiao,Z.;Wang,R.;Sun,D.Ayolk–shelledCo9S8/MoS2-CN nanocomposite derived from a metal-organic framework as a high performance anode for sodium ion batteries. J. Mater. Chem. A 2018, 6, 4776–4782. [CrossRef] 303. Bai,Y.L.;Liu,Y.S.;Ma,C.;Wang,K.X.;Chen,J.S.Neuron-inspireddesignofhigh-performanceelectrode materials for sodium-ion batteries. ACS Nano 2018, 12, 11503–11510. [CrossRef] 304. Pan,Q.;Zhang,Q.;Zheng,F.;Liu,Y.;Li,Y.;Ou,X.;Xiong,X.;Yang,C.;Liu,M.ConstructionofMoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries. ACS Nano 2018, 12, 12578–12586. [CrossRef] [PubMed] 305. Liu,M.;Zhang,P.;Qu,Z.;Yan,Y.;Lai,C.;Liu,T.;Zhang,S.Conductivecarbonnanofiberinterpenetrated graphene architecture for ultra-stable sodium ion battery. Nat. Commun. 2019, 10, 3917. [CrossRef] [PubMed] 306. Shadike,Z.;Cao,M.H.;Ding,F.;Sang,L.;Fu,Z.W.ImprovedelectrochemicalperformanceofCoS2-MWCNT nanocomposites for sodium-ion batteries. Chem. Commun. 2015, 51, 10486–10489. [CrossRef] [PubMed] 307. Xie,K.;Li,L.;Deng,X.;Zhou,W.;Shao,Z.AstronglycoupledCoS2/reducedgrapheneoxidenanostructure as an anode material for efficient sodium-ion batteries. J. Alloy. Compd. 2017, 726, 394–402. [CrossRef] 308. Zhang,X.;Liu,X.J.;Wang,G.;Wang,H.Cobaltdisulfidenanoparticles/graphene/carbonnanotubesaerogels with superior performance for lithium and sodium storage. J. Colloid Interface Sci. 2017, 505, 23–31. [CrossRef] [PubMed] 309. Pan, Y.; Cheng, X.; Huang, Y.; Gong, L.; Zhang, H. CoS2 nanoparticles wrapping on flexible freestanding multichannel carbon nanofibers with high performance for Na-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 35820–35828. [CrossRef] 310. Pan,Y.;Cheng,X.;Gong,L.;Shi,L.;Zhang,H.Nanoflower-likeN-dopedC/CoS2ashigh-performanceanode materials for Na-ion batteries. Nanoscale 2018, 10, 20813–20820. [CrossRef] 311. Pan,Y.;Cheng,X.;Gong,L.;Shi,L.;Zhou,T.;Deng,Y.;Zhang,H.Double-morphologyCoS2anchoredon N-doped multichannel carbon nanofibers as high-performance anode materials for Na-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 31441–31451. [CrossRef] 312. Wang,X.;Li,X.;Li,Q.;Li,H.;Xu,J.;Wang,H.;Zhao,G.;Lu,L.;Lin,X.;Li,H.;etal.Improvedelectrochemical performance based on nanostructured SnS2@CoS2-rGO composite anode for sodium-ion batteries. Nanomicro. Lett. 2018, 10, 46. [CrossRef] 313. Lin, Y.; Qiu, Z.; Li, D.; Ullah, S.; Hai, Y.; Xin, H.; Liao, W.; Yang, B.; Fan, H.; Xu, J.; et al. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Mater. 2018, 11, 67–74. [CrossRef] 314. Zhou,Q.;Liu,L.;Guo,G.;Yan,Z.;Tan,J.;Huang,Z.;Chen,X.;Wang,X.Sandwich-likecobaltsulfide-graphene composite-an anode material with excellent electrochemical performance for sodium ion batteries. RSC Adv. 2015, 5, 71644–71651. [CrossRef] 315. Wu, C.; Jiang, Y.; Kopold, P.; van Aken, P.A.; Maier, J.; Yu, Y. Peapod-like carbon-encapsulated cobalt chalcogenide nanowires as cycle-stable and high-rate materials for sodium-ion anodes. Adv. Mater. 2016, 28, 7276–7283. [CrossRef] [PubMed]

PDF Image | Electrode Materials for Sodium-Ion Batteries

electrode-materials-sodium-ion-batteries-054

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP