logo

Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 055

Materials 2020, 13, 3453 55 of 58 316. Zhu,X.;Jiang,X.;Liu,X.;Xiao,L.;Ai,X.;Yang,H.;Cao,Y.AmorphousCoSnanoparticle/reducedgraphene oxide composite as high-performance anode material for sodium-ion batteries. Ceram. Int. 2017, 43, 9630–9635. [CrossRef] 317. Zhou,L.;Zhang,K.;Sheng,J.;An,Q.;Tao,Z.;Kang,Y.M.;Chen,J.;Mai,L.Structuralandchemicalsynergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy 2017, 35, 281–289. [CrossRef] 318. Li, Q.; Li, L.; Owusu, K.A.; Luo, W.; An, Q.; Wei, Q.; Zhang, Q.; Mai, L. Self-adaptive mesoporous CoS@alveolus-like carbon yolk-shell microsphere for alkali cations storage. Nano Energy 2017, 41, 109–116. [CrossRef] 319. Zhang, Y.; Wang, P.; Yin, Y.; Liu, N.; Song, N.; Fan, L.; Zhang, N.; Sun, K. Carbon coated amorphous bimetallic sulfide hollow nanocubes towards advanced sodium ion battery anode. Carbon 2019, 150, 378–387. [CrossRef] 320. Xie,F.;Zhang,L.;Gu,Q.;Chao,D.;Jaroniek,M.;Qiao,S.Z.Multi-shellhollowstructuredSb2S3forsodium-ion batteries with enhanced energy density. Nano Energy 2019, 60, 591–599. [CrossRef] 321. Wang, Y.X.; Yang, J.; Chou, S.L.; Liu, H.K.; Zhang, W.X.; Zhao, D.; Dou, S.X. Uniform yolk-shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries. Nat. Commun. 2015, 6, 8689. [CrossRef] 322. Bu,F.;Xiao,P.;Chen,J.;Aboud,M.F.A.;Shakir,I.;Xu,Y.Rationaldesignofthree-dimensionalgraphene encapsulated core–shell FeS@carbon nanocomposite as a flexible high-performance anode for sodium-ion batteries. J. Mater. Chem. A 2018, 6, 6414–6421. [CrossRef] 323. Liu, Z.; Lu, T.; Song, T.; Yu, X.Y.; Lou, X.W.; Paik, U. Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1576–1580. [CrossRef] 324. Chen,W.;Qi,S.;Guan,L.;Liu,C.;Cui,S.;Shen,C.;Mi,L.PyriteFeS2microspheresanchoringonreduced graphene oxide aerogel as an enhanced electrode material for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 5332–5341. [CrossRef] 325. Lin, Z.; Xiong, X.; Fan, M.; Xie, D.; Wang, G.; Yang, C.; Liu, M. Scalable synthesis of FeS2 nanoparticles encapsulated into N-doped carbon nanosheets as a high-performance sodium-ion battery anode. Nanoscale 2019, 11, 3773–3779. [CrossRef] [PubMed] 326. Liu,Y.;Fang,Y.;Zhao,Z.;Yuan,C.;Lou,X.W.AternaryFe1-xS@porouscarbonnanowires/reducedgraphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries. Adv. Energy Mater. 2019, 9, 1803052. [CrossRef] 327. Zhao,C.T.;Yu,C.;Qiu,B.;Zhou,S.;Zhang,M.D.;Huang,H.W.;Wang,B.Q.;Zhao,J.J.;Sun,X.L.;Qiu,J.S. Ultrahigh rate and long-life sodium-ion batteries enabled by engineered surface and near-surface reactions. Adv. Mater. 2018, 30, 1702486. [CrossRef] [PubMed] 328. Shi,L.D.;Li,D.Z.;Yu,J.L.;Liu,H.C.;Zhao,Y.;Xin,H.L.;Lin,Y.M.;Lin,C.D.;Li,C.H.;Zhu,C.Z.Uniform core–shell nanobiscuits of Fe7S8@C for lithium-ion and sodium-ion batteries with excellent performance. J. Mater. Chem. A 2018, 6, 7967–7976. [CrossRef] 329. Wang,Q.H.;Zhang,W.C.;Guo,C.;Liu,Y.J.;Wang,C.;Guo,Z.P.Insituconstructionof3Dinterconnected FeS@Fe3C@graphitic carbon networks for high-performance sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1703390. [CrossRef] 330. Chen, Y.Y.; Hu, X.D.; Evanko, B.; Sun, X.H.; Li, X.; Hou, T.; Cai, S.; Zheng, C.M.; Hu, W.B.; Stucky, G.D. High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries. Nano Energy 2018, 46, 117–127. [CrossRef] 331. Li,J.;Yan,D.;Lu,T.;Qin,W.;Yao,Y.;Pan,L.Significantlyimprovedsodium-ionstorageperformanceofCuS nanosheets anchored into reduced graphene oxide with ether-based electrolyte. ACS Appl. Mater. Interfaces 2017, 9, 2309–2316. [CrossRef] 332. Xiong,X.;Yang,C.;Wang,G.;Lin,Y.;Ou,X.;Wang,J.H.;Zhao,B.;Liu,M.;Lin,Z.;Huang,K.Snnanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active durable anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1757–1763. [CrossRef] 333. Shang,J.;Yang,L.;Zhu,Y.E.;Li,F.;Zhang,Y.;Zhou,Z.OrientedSnSnanoflakesboundonS-dopedN-rich carbon nanosheets with a rapid pseudocapacitive response as high-rate anodes for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 19745–19751. [CrossRef]

PDF Image | Electrode Materials for Sodium-Ion Batteries

electrode-materials-sodium-ion-batteries-055

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP