logo

Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 056

Materials 2020, 13, 3453 56 of 58 334. Xia, J.; Liu, L.; Jamil, S.; Xie, J.; Yan, H.; Yuan, Y.; Zhang, Y.; Nie, S.; Pan, J.; Wang, X.; et al. Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. 2019, 17, 1–11. [CrossRef] 335. Zhang, Y.; Wang, P.; Yi, Y.; Zhang, X.; Fan, L.; Zhang, N.; Sun, K. Heterostructured SnS-ZnS@C hollow nanoboxes embedded in graphene for high performance lithium and sodium ion batteries. Chem. Engineer. J. 2019, 356, 1042–1051. [CrossRef] 336. Xia,J.;Jiang,K.;Xie,J.;Guo,S.;Liu,L.;Zhang,Y.;Nie,S.;Yuan,Y.;Yan,H.;Wang,X.Tindisulfideembedded in N-, S-doped carbon nanofibers as anode material for sodium-ion batteries. Chem. Eng. J. 2019, 359, 1244–1251. [CrossRef] 337. Shi,X.;Chen,S.L.;Fan,H.N.;Chen,X.H.;Yuan,D.;Tang,Q.;Hu,A.;Luo,W.B.;Liu,H.K.Metallic-stateSnS2 nanosheets with expanded lattice spacing for high-performance sodium-Ion batteries. Chem. Sus. Chem. 2019, 12, 4046–4053. [CrossRef] [PubMed] 338. Ou, X.; Cao, L.; Liang, X.; Zheng, F.; Zheng, H.S.; Yang, X.; Wang, J.H.; Liu, M. Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial coulombic Efficiency and cycling stability. ACS Nano 2019, 13, 3666–3676. [CrossRef] [PubMed] 339. Wang,J.G.;Sun,H.;Liu,H.;Jin,D.;Zhou,R.;Wei,B.Edge-orientedSnS2nanosheetarraysoncarbonpaper as advanced binder-free anodes for Li-ion and Na-ion batteries. J. Mater. Chem. A 2017, 5, 23115–23122. [CrossRef] 340. Zhang,D.;Sun,W.;Zhang,Y.;Dou,Y.;Jiang,Y.;Dou,S.X.Engineeringhierarchicalhollownickelsulfide spheres for high-performance sodium storage. Adv. Funct. Mater. 2016, 26, 7479–7485. [CrossRef] 341. Sun, R.; Liu, S.; Wei, Q.; Sheng, J.; Zhu, S.; An, Q.; Mai, L. Mesoporous NiS2 nanospheres anode with pseudocapacitance for high-rate and long-life sodium-ion battery. Small 2017, 13, 1701744. [CrossRef] [PubMed] 342. Thavasi,V.;Singh,G.;Ramakrishna,S.Electrospunnanofibersinenergyandenvironmentalapplications. Energy Environ. Sci. 2008, 1, 205–221. [CrossRef] 343. Zhao,W.;Ci,S.;Hu,X.;Chen,J.;Wen,Z.HighlydispersedultrasmallNiS2nanoparticlesinporouscarbon nanofiber anodes for sodium ion batteries. Nanoscale 2019, 11, 4688–4695. [CrossRef] 344. Wang,J.;Liu,Z.;Zheng,Y.;Cui,L.;Yang,W.;Liu,J.Recentadvancesincobaltphosphidebasedmaterialsfor energy-related applications. J. Mater. Chem. A 2017, 5, 22913–22932. [CrossRef] 345. Zhang,K.;Park,M.;Zhang,J.;Lee,G.H.;Shin,J.;Kang,Y.M.Cobaltphosphidenanoparticlesembeddedin nitrogen-doped carbon nanosheets: Promising anode material with high rate capability and long cycle life for sodium-ion batteries. Nano Res. 2017, 10, 4337–4350. [CrossRef] 346. Li,Q.;Dong,S.;Zhang,Y.;Feng,S.;Wang,Q.;Yuan,J.UltrafineCoPNanoparticlesanchoredonreduced graphene oxide nanosheets as anodes for sodium ion batteries with enhanced electrochemical performance. Eur. J. Inorg. Chem. 2018, 2018, 3433–3438. [CrossRef] 347. Zhong,M.;Kong,L.;Li,N.;Liu,Y.Y.;Zhu,J.;Bu,X.H.SynthesisofMOF-derivednanostructuresandtheir applications as anodes in lithium and sodium ion batteries. Coord. Chem. Rev. 2019, 388, 172–201. [CrossRef] 348. Li,Z.;Zhang,L.;Ge,X.;Li,C.;Dong,S.;Wang,C.;Yin,L.Core-shellstructuredCoP/FePporousmicrocubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 2017, 32, 494–502. [CrossRef] 349. Zhang,J.;Zhang,K.;Yang,J.;Lee,G.H.;Shin,J.;Lau,V.W.;Kang,Y.M.Bifunctionalconductingpolymer coated CoP core-shell nanowires on carbon paper as a free-standing anode for sodium ion batteries. Adv. Energy Mater. 2018, 8, 1800283. [CrossRef] 350. Ge,X.;Li,Z.;Yin,L.Metal-organicframeworksderivedporouscore/shellCoP@Cpolyhedronsanchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 2017, 32, 117–124. [CrossRef] 351. Huang,J.;Guo,X.;Du,X.;Lin,X.;Huang,J.Q.;Tan,H.;Zhu,Y.;Zhang,B.Nanostructuresofsolidelectrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ. Sci. 2019, 12, 1550–1557. [CrossRef] 352. Wang,J.W.;Liu,X.H.;Mao,S.X.;Huang,J.Y.Microstructuralevolutionoftinnanoparticlesduringinsitu sodium insertion and extraction. Nano Lett. 2012, 12, 5897–5902. [CrossRef]

PDF Image | Electrode Materials for Sodium-Ion Batteries

electrode-materials-sodium-ion-batteries-056

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP