logo

Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 057

Materials 2020, 13, 3453 57 of 58 353. Zhu,H.;Jia,Z.;Chen,Y.;Weadock,N.;Wan,J.;Vaaland,O.;Han,X.;Li,T.;Hu,L.Tinanodeforsodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013, 13, 3093–3100. [CrossRef] 354. Chen,W.;Deng,D.DeflatedcarbonnanospheresencapsulatingtinCoresdecoratedonlayered3-Dcarbon structures for low-cost sodium ion batteries. ACS Sustain. Chem. Eng. 2015, 3, 63–70. [CrossRef] 355. Liu, Y.; Xu, Y.; Zhu, Y.; Culver, J.N.; Lundgren, C.A.; Xu, K.; Wang, C. Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 2013, 7, 3627–3634. [CrossRef] [PubMed] 356. Lin,Y.M.;Abel,P.R.;Gupta,A.;Goodenough,J.B.;Heller,A.;Mullins,C.B.Sn–Cunanocompositeanodesfor rechargeable sodium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 8273–8277. [CrossRef] [PubMed] 357. Palaniselvam,T.;Goktas,M.;Anothumakkool,B.;Sun,Y.N.;Schmuch,R.;Zhao,L.;Han,B.H.;Adelhelm,P. Sodium storage and electrode dynamics of tin–carbon composite electrodes from bulk precursors for sodium-ion batteries. Adv. Func. Mater. 2019, 29, 1900790. [CrossRef] 358. Darwiche,A.;Marino,C.;Sougrati,M.T.;Fraisse,B.;Stievano,L.;Montconduit,L.Bettercyclingperformances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811. [CrossRef] [PubMed] 359. He,J.;Wei,Y.;Zhai,T.;Li,H.Antimony-basedmaterialsaspromisinganodesforrechargeablelithium-ion and sodium-ion batteries. Mater. Chem. Front. 2018, 2, 437–455. [CrossRef] 360. Wu,L.;Hu,X.;Qian,J.;Pei,F.;Wu,F.;Mao,R.;Ai,X.;Yang,H.;Cao,Y.Sb–Cnanofiberswithlongcyclelifeas an anode material for high-performance sodium-ion batteries. Energy Environ. Sci. 2014, 7, 323–328. [CrossRef] 361. Hou,H.;Yang,Y.;Zhu,Y.;Jing,M.;Pan,C.;Fang,L.;Song,W.;Yang,X.;Ji,X.Anelectrochemicalstudyof Sb/acetylene black composite as anode for sodium-ion batteries. Electrochim. Acta 2014, 146, 328–334. [CrossRef] 362. Zhang,N.;Liu,Y.;Lu,Y.;Han,X.;Cheng,F.;Chen,J.Sphericalnano-Sb@Ccompositeasahigh-rateand ultra-stable anode material for sodium-ion batteries. Nano Res. 2015, 8, 3384–3393. [CrossRef] 363. Wu,T.;Hou,H.;Zhang,C.;Ge,P.;Huang,Z.;Jing,M.;Qiu,X.;Ji,X.Antimonyanchoredwithnitrogen-doping porous carbon as a high-performance anode material for Na-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 26118–26125. [CrossRef] 364. Xu,X.;Dou,Z.;Gu,E.;Si,L.;Zhou,X.;Bao,J.Uniformly-distributedSbnanoparticlesinionicliquid-derived nitrogen-enriched carbon for highly reversible sodium storage. J. Mater. Chem. A 2017, 5, 13411–13420. [CrossRef] 365. Liang,L.;Xu,Y.;Wen,L.;Li,Y.;Zhou,M.;Wang,C.;Zhao,H.;Kaiser,U.;Lei,Y.HierarchicalSb-Ninanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells. Nano Res. 2017, 10, 3189–3201. [CrossRef] 366. Kalisvaart,W.P.;Olsen,B.C.;Luber,E.J.;Buriak,J.M.Sb-Sialloysandmultilayersforsodium-ionbattery anodes. ACS Appl. Energy Mater. 2019, 2, 2205–2213. [CrossRef] 367. Jing,W.T.;Yang,C.C.;Jiang,Q.RecentprogressonmetallicSn-andSb-basedanodesforsodium-ionbatteries. J. Mater. Chem. A 2020, 8, 2913–2933. [CrossRef] 368. Liu,W.;Zhi,H.;Yu,X.Recentprogressinphosphorusbasedanodematerialsforlithium/sodiumionbatteries. Energy Storage Mater. 2019, 16, 290–322. [CrossRef] 369. Sun,J.;Lee,H.W.;Pasta,M.;Yuan,H.;Zheng,G.;Sun,Y.;Li,Y.;Cui,Y.Aphosphorene–graphenehybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985. [CrossRef] 370. Hembram, K.P.S.S.; Jung, H.; Yeo, B.C.; Pai, S.J.; Kim, S.; Lee, K.R.; Han, S.S. Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations. J. Phys. Chem. C 2015, 119, 15041–15046. [CrossRef] 371. Zhang, Y.; Sun, W.; Luo, Z.Z.; Zheng, Y.; Yu, Z.; Zhang, D.; Yang, J.; Tan, H.T.; Zhu, J.; Wang, X.; et al. Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries. Nano Energy 2017, 40, 576–586. [CrossRef] 372. Xu, G.L.; Chen, Z.; Zhong, G.M.; Liu, Y.; Yang, Y.; Ma, T.; Ren, Y.; Zuo, X.; Wu, X.H.; Zhang, X.; et al. Nanostructured black phosphorus/ketjenblack–multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016, 16, 3955–3965. [CrossRef] 373. Liu,H.;Tao,L.;Zhang,Y.;Xie,C.;Zhou,P.;Liu,H.;Chen,R.;Wang,S.Bridgingcovalentlyfunctionalized black phosphorus on graphene for high-performance sodium-ion battery. ACS Appl. Mater. Interfaces 2017, 9, 36849. [CrossRef] 374. Haghighat-Shishavan,S.;Nazarian-Samani,M.;Nazarian-Samani,M.;Roh,H.K.;Chung,K.Y.;Cho,B.W.; Kashani-Bozorg, S.F.; Kim, K.B. Strong, persistent superficial oxidation-assisted chemical bonding of black

PDF Image | Electrode Materials for Sodium-Ion Batteries

electrode-materials-sodium-ion-batteries-057

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP