logo

Material as a High-Performance Cathode Sodium-Ion Batteries

PDF Publication Title:

Material as a High-Performance Cathode Sodium-Ion Batteries ( material-as-high-performance-cathode-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 007

Energies 2022, 15, 5659 7 of 7 References 1. Ma, J.; Long, B.; Zhang, Q.; Qian, Y.; Song, T.; He, W.; Xiao, M.; Liu, L.; Wang, X.; Tong, Y. Turning commercial MnO2 (≥85 wt%) into high-crystallized K+-doped LiMn2O4 cathode with superior structural stability by a low-temperature molten salt method. J. Colloid Interface Sci. 2022, 608, 1377–1383. [CrossRef] [PubMed] 2. Gao, R.-M.; Zheng, Z.-J.; Wang, P.-F.; Wang, C.-Y.; Ye, H.; Cao, F.-F. Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries. Energy Stor. Mater. 2020, 30, 9–26. [CrossRef] 3. Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao, Y. Recent Progress in Rechargeable Sodium-Ion Batteries: Toward High-Power Applications. Small 2019, 15, 1805427. [CrossRef] [PubMed] 4. Hu, J.; Zhang, X.; Xiao, J.; Li, R.; Wang, Y.; Song, S. Template-free synthesis of Co3O4 microtubes for enhanced oxygen evolution reaction. Chin. J. Catal. 2021, 42, 2275–2286. [CrossRef] 5. Lu, Y.; Dimov, N.; Okada, S.; Bui, T. SnSb Alloy Blended with Hard Carbon as Anode for Na-Ion Batteries. Energies 2018, 11, 1614. [CrossRef] 6. Guo, X.; Ma, J.; Song, T.; Hu, L.; Long, B.; Wang, X. A general method to synthesize metal/N-doped carbon nanocomposites with advanced sodium storage properties. J. Alloy Compd. 2021, 858, 157686. [CrossRef] 7. Peng, X.; Wang, C.; Liu, Y.; Fang, W.; Zhu, Y.; Fu, L.; Ye, J.; Liu, L.; Wu, Y. Critical advances in re-engineering the cathode-electrolyte interface in alkali metal-oxygen batteries. Energy Mater. 2021, 1, 100011. [CrossRef] 8. Manzi, J.; Paolone, A.; Palumbo, O.; Corona, D.; Massaro, A.; Cavaliere, R.; Muñoz-García, A.B.; Trequattrini, F.; Pavone, M.; Brutti, S. Monoclinic and Orthorhombic NaMnO2 for Secondary Batteries: A Comparative Study. Energies 2021, 14, 1230. [CrossRef] 9. Huang, T.; Long, M.; Xiao, J.X.; Liu, H.; Wang, G. Recent research on emerging organic electrode materials for energy storage. Energy Mater. 2021, 1, 100009. [CrossRef] 10. Zuo, D.; Wang, C.; Han, J.; Wu, J.; Qiu, H.; Zhang, Q.; Lu, Y.; Lin, Y.; Liu, X. Oriented Formation of a Prussian Blue Nanoflower as a High Performance Cathode for Sodium Ion Batteries. ACS Sustain. Chem. Eng. 2020, 8, 16229–16240. [CrossRef] 11. Liang, Z.; Liu, R.; Xiang, Y.; Zhu, J.; Liu, X.; Ortiz, G.F.; Yang, Y. Electrochemical investigation of multi-electron reactions in NaVOPO4 cathode for sodium-ion batteries. Electrochim. Acta 2020, 351, 136454. [CrossRef] 12. Wang, J.; Kang, J.; Gu, Z.Y.; Liang, Q.; Zhao, X.; Wang, X.; Guo, R.; Yu, H.; Du, C.F.; Wu, X.L. Localized Electron Density Redistribution in Fluorophosphate Cathode: Dangling Anion Regulation and Enhanced Na-Ion Diffusivity for Sodium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2109694. [CrossRef] 13. Wang, M.; Guo, J.; Wang, Z.; Gu, Z.; Nie, X.; Yang, X.; Wu, X. Isostructural and Multivalent Anion Substitution toward Improved Phosphate Cathode Materials for Sodium-Ion Batteries. Small 2020, 16, 1907645. [CrossRef] [PubMed] 14. Wang, J.; Liu, H.; Yang, Q.; Hu, B.; Geng, F.; Zhao, C.; Lin, Y.; Hu, B. Cu-Doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies. ACS Appl. Mater. Interfaces 2020, 12, 34848–34857. [CrossRef] 15. Yang, L.; Luo, S.-h.; Wang, Y.; Zhan, Y.; Wang, Q.; Zhang, Y.; Liu, X.; Mu, W.; Teng, F. Cu-doped layered P2-type Na0.67Ni0.33-xCuxMn0.67O2 cathode electrode material with enhanced electrochemical performance for sodium-ion batteries. Chem. Eng. J. 2021, 404, 126578. [CrossRef] 16. Pang, W.-L.; Zhang, X.-H.; Guo, J.-Z.; Li, J.-Y.; Yan, X.; Hou, B.-H.; Guan, H.-Y.; Wu, X.-L. P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. J. Power Sources 2017, 356, 80–88. [CrossRef] 17. Zhang, J.; Wang, W.; Wang, W.; Wang, S.; Li, B. Comprehensive Review of P2-Type Na2/3 Ni1/3 Mn2/3 O2 , a Potential Cathode for Practical Application of Na-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 22051–22066. [CrossRef] 18. Jiang, K.; Zhang, X.; Li, H.; Zhang, X.; He, P.; Guo, S.; Zhou, H. Suppressed the High-Voltage Phase Transition of P2-Type Oxide Cathode for High-Performance Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 14848–14853. [CrossRef] 19. Vanaphuti, P.; Yao, Z.; Liu, Y.; Lin, Y.; Wen, J.; Yang, Z.; Feng, Z.; Ma, X.; Zauha, A.C.; Wang, Y.; et al. Achieving High Stability and Performance in P2-Type Mn-Based Layered Oxides with Tetravalent Cations for Sodium-Ion Batteries. Small 2022, 18, 2201086. [CrossRef] 20. Hwang, T.; Lim, J.M.; Oh, R.G.; Cho, W.; Cho, M.; Cho, K. Intrinsic enhancement of the rate capability and suppression of the phase transition via p-type doping in Fe-Mn based P2-type cathodes used for sodium ion batteries. Phys. Chem. Chem. Phys. 2021, 23, 5438–5446. [CrossRef] 21. Chen, J.; Xiao, Z.; Meng, J.; Sheng, J.; Xu, Y.; Wang, J.; Han, C.; Mai, L. Novel layered K0.7Mn0.7Ni0.3O2 cathode material with enlarged diffusion channels for high energy density sodium-ion batteries. Sci. China Mater. 2020, 63, 1163–1170. [CrossRef] 22. Wang, Y.; Feng, Z.; Cui, P.; Zhu, W.; Gong, Y.; Girard, M.A.; Lajoie, G.; Trottier, J.; Zhang, Q.; Gu, L.; et al. Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nat. Commun. 2021, 12, 13. [CrossRef] [PubMed] 23. Zhang, C.; Song, H.; Liu, C.; Liu, Y.; Zhang, C.; Nan, X.; Cao, G. Fast and Reversible Li Ion Insertion in Carbon-Encapsulated Li3VO4 as Anode for Lithium-Ion Battery. Adv. Funct. Mater. 2015, 25, 3497–3504. [CrossRef]

PDF Image | Material as a High-Performance Cathode Sodium-Ion Batteries

material-as-high-performance-cathode-sodium-ion-batteries-007

PDF Search Title:

Material as a High-Performance Cathode Sodium-Ion Batteries

Original File Name Searched:

energies-15-05659.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP