Recent Development for Sodium Metal Batteries

PDF Publication Title:

Recent Development for Sodium Metal Batteries ( recent-development-sodium-metal-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 020

Batteries 2022, 8, 157 20 of 25 References NMBs. Moreover, simply optimizing the solid-state electrolytes in NMBs from a technical level cannot effectively improve the performance of the Na metal anodes. Therefore, further revealing the potential electrochemical mechanisms, including the Na-ion transport behaviors, transfer paths, internal interactions, etc., is also crucial. This understanding will be favorable to guide the design of a new type of solid-state electrolytes with high ionic conductivity and optimization of the configuration and composition of the solid- state electrolytes. Funding: This research is funded by [Shenzhen Science and Technology Program] grant num- ber [JCYJ20200109113606007] and [Science and Technology Program of Guangzhou] grant number [202102020737]. Data Availability Statement: Not applicable. Acknowledgments: We also thank the financial support from the Shenzhen Science and Technol- ogy Program (JCYJ20200109113606007) and the Science and Technology Program of Guangzhou, China (202102020737). Conflicts of Interest: The authors declare no conflict of interest. 1. Wen, J.; Zhao, D.; Zhang, C. An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency. Renew. Energy 2020, 162, 1629–1648. [CrossRef] 2. Wang, Z.; Zhuo, W.; Li, J.; Ma, L.; Tan, S.; Zhang, G.; Yin, H.; Qin, W.; Wang, H.; Pan, L. Regulation of ferric iron vacancy for Prussian blue analogue cathode to realize high-performance potassium ion storage. Nano Energy 2022, 98, 107243. [CrossRef] 3. Dai, L.; Huang, K.; Xia, Y.; Xu, Z. Two-dimensional material separation membranes for renewable energy purification, storage, and conversion. Green Energy Environ. 2021, 6, 193–211. [CrossRef] 4. Li, J.L.; Zhuang, N.; Xie, J.P.; Li, X.D.; Zhuo, W.C.; Wang, H.; Na, J.B.; Li, X.B.; Yamauchi, Y.; Mai, W.J. K-Ion Storage Enhancement in Sb2O3/Reduced Graphene Oxide Using Ether-Based Electrolyte. Adv. Energy Mater. 2020, 10, 1903455. [CrossRef] 5. Hirsh, H.S.; Li, Y.; Tan, D.H.; Zhang, M.; Zhao, E.; Meng, Y.S. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 2020, 10, 2001274. [CrossRef] 6. Choi, D.; Shamim, N.; Crawford, A.; Huang, Q.; Vartanian, C.K.; Viswanathan, V.V.; Paiss, M.D.; Alam, M.J.E.; Reed, D.M.; Sprenkle, V.L. Li-ion battery technology for grid application. J. Power Sources 2021, 511, 230419. [CrossRef] 7. Vivo-Vilches, J.F.; Karakashov, B.; Celzard, A.; Fierro, V.; El Hage, R.; Brosse, N.; Dufour, A.; Etienne, M. Carbon Monoliths with Hierarchical Porous Structure for All-Vanadium Redox Flow Batteries. Batteries 2021, 7, 55. [CrossRef] 8. Zhou, J.; Zhuang, H.L.; Wang, H. Layered tetragonal zinc chalcogenides for energy-related applications: From photocatalysts for water splitting to cathode materials for Li-ion batteries. Nanoscale 2017, 9, 17303–17311. [CrossRef] 9. Gao, L.; Chen, S.; Zhang, G.; Dai, Z.; Yan, D.; Yang, H.Y.; Yu, C.; Bai, Y. Improved thermal and structural stabilities of LiNi0.6Co0.2Mn0.2O2 cathode by La2Zr2O7 multifunctional modification. Appl. Phys. Lett. 2021, 119, 093902. [CrossRef] 10. Nisar, U.; Muralidharan, N.; Essehli, R.; Amin, R.; Belharouak, I. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Mater. 2021, 38, 309–328. [CrossRef] 11. Xie, J.P.; Li, X.D.; Lai, H.J.; Zhao, Z.J.; Li, J.L.; Zhang, W.G.; Xie, W.G.; Liu, Y.M.; Mai, W.J. A Robust Solid Electrolyte Interphase Layer Augments the Ion Storage Capacity of Bimetallic-Sulfide-Containing Potassium-Ion Batteries. Angew. Chem. Int. Ed. 2019, 58, 14740–14747. [CrossRef] [PubMed] 12. Xie, J.; Li, J.; Li, X.; Lei, H.; Zhuo, W.; Li, X.; Hong, G.; Hui, K.N.; Pan, L.; Mai, W. Ultrahigh “relative energy density” and mass loading of carbon cloth anodes for K-ion batteries. CCS Chem. 2021, 3, 791–799. [CrossRef] 13. Ma, K.; Liu, Y.; Jiang, H.; Hu, Y.; Si, R.; Liu, H.; Li, C. Multivalence-ion intercalation enables ultrahigh 1T phase MoS2 nanoflowers to enhanced sodium-storage performance. CCS Chem. 2021, 3, 1472–1482. [CrossRef] 14. Mohsin, I.U.; Ziebert, C.; Rohde, M.; Seifert, H.J. Thermophysical characterization of a layered P2 type structure Na0.53MnO2 cathode material for sodium ion batteries. Batteries 2021, 7, 16. [CrossRef] 15. Li, X.D.; Liu, Z.B.; Li, J.L.; Lei, H.; Zhuo, W.C.; Qin, W.; Cai, X.; Hui, K.N.; Pan, L.K.; Mai, W.J. Insights on the mechanism of Na-ion storage in expanded graphite anode. J. Energy Chem. 2021, 53, 56–62. [CrossRef] 16. Dong, S.; Lv, N.; Wu, Y.; Zhang, Y.; Zhu, G.; Dong, X. Titanates for sodium-ion storage. Nano Today 2022, 42, 101349. [CrossRef] 17. Yang, C.; Xin, S.; Mai, L.; You, Y. Materials design for high-safety sodium-ion battery. Adv. Energy Mater. 2021, 11, 2000974. [CrossRef] 18. Lyu, T.; Lan, X.; Liang, L.; Lin, X.; Hao, C.; Pan, Z.; Tian, Z.Q.; Shen, P.K. Natural mushroom spores derived hard carbon plates for robust and low-potential sodium ion storage. Electrochim. Acta 2021, 365, 137356. [CrossRef] 19. Liu, Q.; Xu, R.; Mu, D.; Tan, G.; Gao, H.; Li, N.; Chen, R.; Wu, F. Progress in electrolyte and interface of hard carbon and graphite anode for sodium-ion battery. Carbon Energy 2022, 4, 458–479. [CrossRef]

PDF Image | Recent Development for Sodium Metal Batteries

PDF Search Title:

Recent Development for Sodium Metal Batteries

Original File Name Searched:

batteries-08-00157-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)