Recent Development for Sodium Metal Batteries

PDF Publication Title:

Recent Development for Sodium Metal Batteries ( recent-development-sodium-metal-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 021

Batteries 2022, 8, 157 21 of 25 20. Maça, R.R.; Etacheri, V. Effect of vinylene carbonate electrolyte additive on the surface chemistry and pseudocapacitive sodium-ion storage of TiO2 nanosheet anodes. Batteries 2020, 7, 1. [CrossRef] 21. Chu, C.; Li, R.; Cai, F.; Bai, Z.; Wang, Y.; Xu, X.; Wang, N.; Yang, J.; Dou, S. Recent advanced skeletons in sodium metal anodes. Energy Environ. Sci. 2021, 14, 4318–4340. [CrossRef] 22. Yuan, X.R.; Chen, S.M.; Li, J.L.; Xie, J.P.; Yan, G.H.; Liu, B.T.; Li, X.B.; Li, R.; Pan, L.K.; Mai, W.J. Understanding the improved performance of sulfur-doped interconnected carbon microspheres for Na-ion storage. Carbon Energy 2021, 3, 615–626. [CrossRef] 23. Zhang, Y.J.; Li, J.L.; Ma, L.; Li, H.B.; Xu, X.T.; Liu, X.J.; Lu, T.; Pan, L.K. Insights into the storage mechanism of 3D nanoflower-like V3S4 anode in sodium-ion batteries. Chem. Eng. J. 2022, 427, 130936. [CrossRef] 24. Sun, Y.; Yang, Y.; Shi, X.-L.; Suo, G.; Xue, F.; Liu, J.; Lu, S.; Chen, Z.-G. N-doped silk wadding-derived carbon/SnOx@ reduced graphene oxide film as an ultra-stable anode for sodium-ion half/full battery. Chem. Eng. J. 2022, 433, 133675. [CrossRef] 25. Park, J.; Sharma, J.; Jafta, C.J.; He, L.; Meyer III, H.M.; Li, J.; Keum, J.K.; Nguyen, N.A.; Polizos, G. Reduced Graphene Oxide Aerogels with Functionalization-Mediated Disordered Stacking for Sodium-Ion Batteries. Batteries 2022, 8, 12. [CrossRef] 26. Jiang, B.; Wei, Y.; Wu, J.; Cheng, H.; Yuan, L.; Li, Z.; Xu, H.; Huang, Y. Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries. EnergyChem 2021, 3, 100058. [CrossRef] 27. Fang, H.Y.; Gao, S.N.; Zhu, Z.; Ren, M.; Wu, Q.; Li, H.X.; Li, F.J. Recent Progress and Perspectives of Sodium Metal Anodes for Rechargeable Batteries. Chem. Res. Chin. Univ. 2021, 37, 189–199. [CrossRef] 28. Li, Z.P.; Zhu, K.J.; Liu, P.; Jiao, L.F. 3D Confinement Strategy for Dendrite-Free Sodium Metal Batteries. Adv. Energy Mater. 2022, 12, 2100359. [CrossRef] 29. Bao, C.Y.; Wang, B.; Liu, P.; Wu, H.; Zhou, Y.; Wang, D.L.; Liu, H.K.; Dou, S.X. Solid Electrolyte Interphases on Sodium Metal Anodes. Adv. Funct. Mater. 2020, 30, 2004891. [CrossRef] 30. Chen, Q.W.; He, H.; Hou, Z.; Zhuang, W.M.; Zhang, T.X.; Sun, Z.Z.; Huang, L.M. Building an artificial solid electrolyte interphase with high-uniformity and fast ion diffusion for ultralong-life sodium metal anodes. J. Mater. Chem. A 2020, 8, 16232–16237. [CrossRef] 31. Zhao, Y.; Goncharova, L.V.; Lushington, A.; Sun, Q.; Yadegari, H.; Wang, B.Q.; Xiao, W.; Li, R.Y.; Sun, X.L. Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition. Adv. Mater. 2017, 29, 1606663. [CrossRef] [PubMed] 32. Lee, J.; Kim, J.; Kim, S.; Jo, C.; Lee, J. A review on recent approaches for designing the SEI layer on sodium metal anodes. Mater. Adv. 2020, 1, 3143–3166. [CrossRef] 33. Wang, H.; Liang, J.L.; Wu, Y.; Kang, T.X.; Shen, D.; Tong, Z.Q.; Yang, R.; Jiang, Y.; Wu, D.; Li, X.J.; et al. Porous BN Nanofibers Enable Long-Cycling Life Sodium Metal Batteries. Small 2020, 16, 2002671. [CrossRef] [PubMed] 34. Zhang, Q.; Lu, Y.Y.; Miao, L.C.; Zhao, Q.; Xia, K.X.; Liang, J.; Chou, S.L.; Chen, J. An Alternative to Lithium Metal Anodes: Non-dendritic and Highly Reversible Sodium Metal Anodes for Li-Na Hybrid Batteries. Angew. Chem. Int. Ed. 2018, 57, 14796–14800. [CrossRef] 35. Wang, H.; Wu, Y.; Liu, S.; Jiang, Y.; Shen, D.; Kang, T.; Tong, Z.; Wu, D.; Li, X.; Lee, C.S. 3D Ag@C cloth for stable anode free sodium metal batteries. Small Methods 2021, 5, 2001050. [CrossRef] [PubMed] 36. Li, L.; Zhu, M.; Wang, G.; Yu, F.; Wen, L.; Liu, H.-K.; Dou, S.-X.; Wu, C. An in-situ generated Bi-based sodiophilic substrate with high structural stability for high-performance sodium metal batteries. J. Energy Chem. 2022, 71, 595–603. [CrossRef] 37. Liang, J.; Wu, W.; Xu, L.; Wu, X. Highly stable Na metal anode enabled by a multifunctional hard carbon skeleton. Carbon 2021, 176, 219–227. [CrossRef] 38. Mo, L.; Chen, A.-L.; Ouyang, Y.; Zong, W.; Miao, Y.-E.; Liu, T. Asymmetric Sodiophilic Host Based on a Ag-Modified Carbon Fiber Framework for Dendrite-Free Sodium Metal Anodes. ACS Appl. Mater. Interfaces 2021, 13, 48634–48642. [CrossRef] 39. Yang, W.; Yang, W.; Dong, L.; Shao, G.; Wang, G.; Peng, X. Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-dimensional skeleton for dendrite-free sodium metal anodes. Nano Energy 2021, 80, 105563. [CrossRef] 40. Ye, S.; Wang, L.; Liu, F.; Shi, P.; Yu, Y. Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode. eScience 2021, 1, 75–82. [CrossRef] 41. Liu, T.; Yang, X.; Nai, J.; Wang, Y.; Liu, Y.; Liu, C.; Tao, X. Recent development of Na metal anodes: Interphase engineering chemistries determine the electrochemical performance. Chem. Eng. J. 2021, 409, 127943. [CrossRef] 42. Ma, B.; Bai, P. Fast Charging Limits of Ideally Stable Metal Anodes in Liquid Electrolytes. Adv. Energy Mater. 2022, 12, 2102967. [CrossRef] 43. Zhao, W.; Guo, M.; Zuo, Z.; Zhao, X.; Dou, H.; Zhang, Y.; Li, S.; Wu, Z.; Shi, Y.; Ma, Z. Engineering sodium metal anode with sodiophilic bismuthide penetration for dendrite-free and high-rate sodium-ion battery. Engineering 2022, 11, 87–94. [CrossRef] 44. Zheng, X.; Gu, Z.; Fu, J.; Wang, H.; Ye, X.; Huang, L.; Liu, X.; Wu, X.; Luo, W.; Huang, Y. Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries. Energy Environ. Sci. 2021, 14, 4936–4947. [CrossRef] 45. Wang, S.; Liu, Y.; Lu, K.; Cai, W.; Jie, Y.; Huang, F.; Li, X.; Cao, R.; Jiao, S. Engineering rGO/MXene hybrid film as an anode host for stable sodium-metal batteries. Energy Fuels 2021, 35, 4587–4595. [CrossRef] 46. Yang, H.; Zhang, L.; Wang, H.; Huang, S.; Xu, T.; Kong, D.; Zhang, Z.; Zang, J.; Li, X.; Wang, Y. Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode. J. Colloid Interface Sci. 2022, 611, 317–326. [CrossRef] 47. Wang, R.; Han, H.-H.; Liu, F.-Q.; Jia, S.-X.; Xiang, T.-Q.; Huo, H.; Zhou, J.-J.; Li, L. Sulfonated poly (vinyl alcohol) as an artificial solid electrolyte interfacial layer for Li metal anode. Electrochim. Acta 2022, 406, 139840. [CrossRef]

PDF Image | Recent Development for Sodium Metal Batteries

PDF Search Title:

Recent Development for Sodium Metal Batteries

Original File Name Searched:

batteries-08-00157-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)