logo

Concurrent Separation of CO2 and H2O from Air PSA

PDF Publication Title:

Concurrent Separation of CO2 and H2O from Air PSA ( concurrent-separation-co2-and-h2o-from-air-psa )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 007

Environmental Science & Technology Article Materials Science and Technology (Empa), and the ETH Spin- off company Climeworks Ltd. The project partners thank Gebert Ruef Foundation for financial support. ■ NOMENCLATURE calcination cycles in a fluidized-bed solar reactor. Chem. Eng. J. 2009, 146 (2), 244−248, DOI: 10.1016/j.cej.2008.06.005. (5) Lackner, K. S. Capture of carbon dioxide from ambient air. Eur. Phys. J. Special Topics 2009, 176, 93−106, DOI: 10.1140/epjst/e2009- 01150-3. (6) Wang, T.; Lackner, K. S.; Wright, A. Moisture swing sorbent for carbon dioxide capture from ambient air. Environ. Sci. Technol. 2011, 45 (15), 6670−6675, DOI: 10.1021/Es201180v. (7) Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A. Amine-bearing mesoporous silica for CO2 removal from dry and humid air. Chem. Eng. Sci. 2010, 65 (11), 3695−3698, DOI: 10.1016/j.ces.2010.02.044. (8) Choi, S.; Gray, M. L.; Jones, C. W. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air. ChemSusChem 2011, 4 (5), 628−635, DOI: 10.1002/cssc.201000355. (9) Choi, S.; Drese, J. H.; Eisenberger, P. M.; Jones, C. W. Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. Environ. Sci. Technol. 2011, 45 (6), 2420−2427, DOI: 10.1021/es102797w. (10) Chaikittisilp, W.; Lunn, J. D.; Shantz, D. F.; Jones, C. W. Poly(L-lysine) brush-mesoporous silica hybrid material as a bio- molecule-based adsorbent for CO2 capture from simulated flue gas and air. Chem.Eur. J. 2011, 17 (38), 10556−10561, DOI: 10.1002/ chem.201101480. (11) Stuckert, N. R.; Yang, R. T. CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA- 15. Environ. Sci. Technol. 2011, 45 (23), 10257−10264, DOI: 10.1021/ Es202647a. (12) Goeppert, A.; Czaun, M.; May, R. B.; Prakash, G. K. S.; Olah, G. A.; Narayanan, S. R. Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J. Am. Chem. Soc. 2011, 133 (50), 20164−20167, DOI: 10.1021/Ja2100005. (13) Chueh, W. C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S. M.; Steinfeld, A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 2010, 330 (6012), 1797−1801, DOI: 10.1126/science.1197834. (14) Loutzenhiser, P. G.; Meier, A.; Steinfeld, A. Review of the two- step H2O/CO2-splitting solar thermochemical cycle based on Zn/ ZnO redox reactions. Materials 2010, 3 (11), 4922−4938, DOI: 10.3390/ma3114922. (15) Graves, C.; Ebbesen, S. D.; Mogensen, M.; Lackner, K. S. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renewable Sustainable Energy Rev. 2011, 15 (1), 1−23, DOI: 10.1016/j.rser.2010.07.014. (16) Zeman, F. S.; Keith, D. W. Carbon neutral hydrocarbons. Philos. Trans. R. Soc., A 2008, 366 (1882), 3901−3918, DOI: 10.1098/ rsta.2008.0143. (17) Olah, G. A.; Prakash, G. K. S.; Goeppert, A. Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 2011, 133 (33), 12881−12898, DOI: 10.1021/Ja202642y. (18) Realff, M. J.; Eisenberger, P. Flawed analysis of the possibility of air capture. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, (25); DOI: 10.1073/pnas.1203618109. (19) Socolow, R.; Desmond, M.; Aines, R.; Blackstock, J.; Bolland, O.; Kaarsberg, T.; Lewis, N.; Mazzotti, M.; Pfeffer, A.; Sawyer, K.; Siirola, J.; Smit, B.; Wilcox, J. Direct Air Capture of CO2 with Chemicals; American Physical Society (APS): 2011. (20) House, K. Z.; Baclig, A. C.; Ranjan, M.; van Nierop, E. A.; Wilcox, J.; Herzog, H. J. Economic and energetic analysis of capturing CO2 from ambient air. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (51), 20428−20433, DOI: 10.1073/pnas.1012253108. (21) Herzog, H. J.; House, K. Z.; Baclig, A. C.; Nierop, E. A. v.; Wilcox, J. Reply to Realff and Eisenberger: energy requirements of air capture systems. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, (25); DOI: 10.1073/pnas.1204448109 (22) Furler, P.; Scheffe, J. R.; Steinfeld, A. Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor. Energy Environ. Sci. 2012, 5 (3), 6098− 6103, DOI: 10.1039/C1ee02620h. c0,CO2/H2O c1,CO2/H2O cd,H2O cp,sorb cp,CO2 cp,H2O hdes,CO2 hdes,H2O ms ṅair ṅCO2 ṅd pamb pdes q(ads) (t) CO2/H2O Δq(ads) CO2/H2O Δq(des) CO2/H2O Q Qdes Qsens R t T Tpump Wcomp ηpump φ Subscripts ads adsorption des desorption Acronyms APDES APDES-NFC-FD DAC NFC RH TVS CO2/H2O concentration upstream of the adsorp- tion reactor CO2/H2O concentration downstream of the adsorption reactor H2O concentration in the drying gas at the exit of the gas dryer heat capacity of the sorbent material heat capacity of adsorbed CO2 heat capacity of adsorbed H2O heat of CO2 desorption heat of H2O desorption mass of the sorbent material sample molar flow rate of air molar flow rate of CO2 molar flow rate of drying gas (air) ambient pressure desorption pressure cumulative CO /H O uptake during adsorption 22 cyclic CO /H O adsorption capacity in TVS 22 process cyclic CO /H O desorption capacity in TVS 22 process total heat requirement for sorbent regeneration total heat of desorption sensible heat required to heat up sorbent material for desorption ideal gas constant time temperature operating temperature of the vacuum pump mechanical compression work efficiency of the vacuum pump relative humidity 3-aminopropylmethyldiethoxysilane sorbent material used in this study direct air capture of CO2 nanofibrillated cellulose relative humidity temperature-vacuum swing ■ REFERENCES (1) Jones, C. W. CO2 Capture from dilute gases as a component of modern global carbon management. Ann. Rev. Chem. Biomol. Eng. 2011, 2, 2.1−2.22, DOI: 10.1146/annurev-chembioeng-061010- 114252. (2) Keith, D. W. Why capture CO2 from the atmosphere? Science 2009, 325 (5948), 1654−1655, DOI: 10.1126/science.1175680. (3) Mahmoudkhani, M.; Keith, D. W. Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air-thermodynamic analysis. Int. J. Greenhouse Gas Control 2009, 3 (4), 376−384, DOI: 10.1016/j.ijggc.2009.02.003. (4) Nikulshina, V.; Gebald, C.; Steinfeld, A. CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3- 9197 dx.doi.org/10.1021/es301953k | Environ. Sci. Technol. 2012, 46, 9191−9198

PDF Image | Concurrent Separation of CO2 and H2O from Air PSA

concurrent-separation-co2-and-h2o-from-air-psa-007

PDF Search Title:

Concurrent Separation of CO2 and H2O from Air PSA

Original File Name Searched:

Separation-of-CO2-and-H2O-PSApdf.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP