PDF Publication Title:
Text from PDF Page: 008
Environmental Science & Technology Article (23) Elimelech, M.; Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 2011, 333 (6043), 712−717, DOI: 10.1126/science.1200488. (24) Schladt, M. J.; Filburn, T. P.; Helble, J. J. Supported amine sorbents under temperature swing absorption for CO2 and moisture capture. Ind. Eng. Chem. Res. 2007, 46 (5), 1590−1597, DOI: 10.1021/ ie0608915. (25) Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A. Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for gas purification. Ind. Eng. Chem. Res. 2010, 49 (1), 359−365, DOI: 10.1021/ie900837t. (26) Chaikittisilp, W.; Khunsupat, R.; Chen, T. T.; Jones, C. W. Poly(allylamine)-mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Ind. Eng. Chem. Res. 2011, 50 (24), 14203−14210, DOI: 10.1021/Ie201584t. (27) Chaikittisilp, W.; Kim, H. J.; Jones, C. W. Mesoporous alumina- supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air. Energy Fuels 2011, 25 (11), 5528−5537, DOI: 10.1021/Ef201224v. (28) Gebald, C.; Wurzbacher, J. A.; Tingaut, P.; Zimmermann, T.; Steinfeld, A. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ. Sci. Technol. 2011, 45 (20), 9101− 9108, DOI: 10.1021/Es202223p. (29) McDonald, T. M.; Lee, W. R.; Mason, J. A.; Wiers, B. M.; Hong, C. S.; Long, J. R. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg-2(dobpdc). J. Am. Chem. Soc. 2012, 134 (16), 7056−7065, DOI: 10.1021/ ja300034j. (30) Choi, S.; Watanabe, T.; Bae, T. H.; Sholl, D. S.; Jones, C. W. Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases. J. Phys. Chem. Lett. 2012, 3 (9), 1136−1141, DOI: 10.1021/jz300328j. (31) Bollini, P.; Didas, S. A.; Jones, C. W. Amine-oxide hybrid materials for acid gas separations. J. Mater. Chem. 2011, 21 (39), 15100−15120, DOI: 10.1039/C1jm12522b. (32) Li, W.; Choi, S.; Drese, J. H.; Hornbostel, M.; Krishnan, G.; Eisenberger, P. M.; Jones, C. W. Steam-stripping for regeneration of supported amine-based CO2 adsorbents. ChemSusChem 2010, 3 (8), 899−903, DOI: 10.1002/cssc.201000131. (33) Wurzbacher, J. A.; Gebald, C.; Steinfeld, A. Separation of CO2 from air by temperature-vacuum swing adsorption using diamine- functionalized silica gel. Energy Environ. Sci. 2011, 4 (9), 3584−3592, DOI: 10.1039/C1ee01681d. (34) Sayari, A.; Belmabkhout, Y.; Serna-Guerrero, R. Flue gas treatment via CO2 adsorption. Chem. Eng. J. 2011, 171 (3), 760−774, DOI: 10.1016/j.cej.2011.02.007. (35) Wang, L. F.; Yang, R. T. Increasing selective CO2 adsorption on amine-grafted SBA-15 by increasing silanol density. J. Phys. Chem. C 2011, 115 (43), 21264−21272, DOI: 10.1021/Jp206976d. (36) Serna-Guerrero, R.; Da’na, E.; Sayari, A. New Insights into the Interactions of CO2 with amine-functionalized silica. Ind. Eng. Chem. Res. 2008, 47 (23), 9406−9412, DOI: 10.1021/ie801186g. (37) Bacsik, Z.; Ahlsten, N.; Ziadi, A.; Zhao, G. Y.; Garcia-Bennett, A. E.; Martin-Matute, B.; Hedin, N. Mechanisms and kinetics for sorption of CO2 on bicontinuous mesoporous silica modified with n- propylamine. Langmuir 2011, 27 (17), 11118−11128, DOI: 10.1021/La202033p. (38) Knofel, C.; Martin, C.; Hornebecq, V.; Llewellyn, P. L. Study of carbon dioxide adsorption on mesoporous aminopropylsilane- functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy. J. Phys. Chem. C 2009, 113 (52), 21726− 21734, DOI: 10.1021/Jp907054h. (39) Danon, D.; Stair, P. C.; Weitz, E. FTIR study of CO2 adsorption on amine-grafted SBA-15: elucidation of adsorbed species. J. Phys. Chem. C 2011, 115 (23), 11540−11549, DOI: 10.1021/Jp200914v. (40) Pinto, M. L.; Mafra, L.; Guil, J. M.; Pires, J.; Rocha, J. Adsorption and activation of CO2 by amine-modified nanoporous materials studied by solid-state NMR and (13)CO2 adsorption. Chem. Mater. 2011, 23 (6), 1387−1395, DOI: 10.1021/Cm1029563. (41) Satyapal, S.; Filburn, T.; Trela, J.; Strange, J. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy Fuels 2001, 15 (2), 250−255, DOI: 10.1021/ef0002391. (42) Belmabkhout, Y.; De Weireld, G.; Sayari, A. Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas. Langmuir 2009, 25 (23), 13275−13278, DOI: 10.1021/ la903238y. (43) Serna-Guerrero, R.; Belmabkhout, Y.; Sayari, A. Triamine- grafted pore-expanded mesoporous silica for CO2 capture: effect of moisture and adsorbent regeneration strategies. Adsorption 2010, 16 (6), 567−575, DOI: 10.1007/s10450-010-9253-y. (44) Li, G.; Xiao, P.; Webley, P. Binary adsorption equilibrium of carbon dioxide and water vapor on activated alumina. Langmuir 2009, 25 (18), 10666−10675, DOI: 10.1021/la901107s. (45) Belbekhouche, S.; Bras, J.; Siqueira, G.; Chappey, C.; Lebrun, L.; Khelifi, B.; Marais, S.; Dufresne, A. Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr. Polym. 2011, 83 (4), 1740−1748, DOI: 10.1016/ j.carbpol.2010.10.036. (46) Ahn, H.; Lee, C. H. Effects of capillary condensation on adsorption and thermal desorption dynamics of water in zeolite 13X and layered beds. Chem. Eng. Sci. 2004, 59 (13), 2727−2743, DOI: 10.1016/j.ces.2004.04.011. (47) Al-Muhtaseb, A. H.; McMinn, W. A. M.; Magee, T. R. A. Water sorption isotherms of starch powders - Part 1: mathematical description of experimental data. J. Food Eng. 2004, 61 (3), 297− 307, DOI: 10.1016/S0260-8774(03)00133-X. (48) Iglesias, H. A.; Chirife, J. Isosteric heats of water vapor sorption on dehydrated foods part I. analysis of the differential heat curves. Lebensmittel-Wissenschaft Technol. 1976, 9 (2), 116−122. 9198 dx.doi.org/10.1021/es301953k | Environ. Sci. Technol. 2012, 46, 9191−9198PDF Image | Concurrent Separation of CO2 and H2O from Air PSA
PDF Search Title:
Concurrent Separation of CO2 and H2O from Air PSAOriginal File Name Searched:
Separation-of-CO2-and-H2O-PSApdf.pdfDIY PDF Search: Google It | Yahoo | Bing
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
Heat Pumps CO2 ORC Heat Pump System Platform More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)