PDF Publication Title:
Text from PDF Page: 004
LIMITS OF SMALL SCALE PRESSURE SWING ADSORPTION AARON A. MORAN ABSTRACT Portable or small scale pressure swing adsorption (PSA) systems have gained increasing popularity in both industry and literature due to the commercial success of personal oxygen concentrators (POCs). While these processes have much in common with larger PSA systems, significant differences exist that make understanding process limitations difficult. These include faster cycle times, smaller adsorbent particles, and a reduced column size. Macropore diffusion is traditionally assumed to control the mass transfer rate in columns packed with zeolite particles in an oxygen production process. While numerous studies have confirmed this assumption for the particle size used in industrial size PSA processes, it has not been validated for the much smaller particle size used in small scale PSA. Smaller particles improve the mass transfer rate by increasing interfacial area per volume as well as decreasing diffusion distance. Despite this reduction, small scale PSA simulations often still assume a mass transfer rate solely limited by macropore diffusion. This approach fails to adequately account for the influence of other mass transfer mechanisms whose impact increases due to particle size reduction. This study experimentally demonstrates the dominant mass transfer mechanism is no longer macropore diffusion for the particle size used in small scale PSA for oxygen production. Depending on the gas velocity, axial dispersion effects either become the limiting mechanism or equally as important as macropore diffusion. It also shows that improperly ivPDF Image | LIMITS OF SMALL SCALE PRESSURE SWING ADSORPTION
PDF Search Title:
LIMITS OF SMALL SCALE PRESSURE SWING ADSORPTIONOriginal File Name Searched:
Limits of Small Scale PSA_Aaron Moran.pdfDIY PDF Search: Google It | Yahoo | Bing
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
Heat Pumps CO2 ORC Heat Pump System Platform More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)