Modeling and Simulation for Pressure Swing Adsorption System

PDF Publication Title:

Modeling and Simulation for Pressure Swing Adsorption System ( modeling-and-simulation-pressure-swing-adsorption-system )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 006

414 P. BISWAS et al., Modeling and Simulation for Pressure Swing Adsorption System ..., Chem. Biochem. Eng. Q. 24 (4) 409–414 (2010) Appendix Column specifications: column length, L/m column diameter, D/m bed porosity, e adsorbent wall density, rw /kg m–3 wall specific heat capacity, cp,w/J kg–1 K–1 aw/m–1 aw1/m–1 Particle specifications: Activated Carbon 0.452 CO2: 29084 H2: 12843 CH4: 22701 CO: 22577 N2: 16263 2 0.2 0.38 activated carbon/zeolite 8340 500 195 197 Zeolite 0.503 1126 920 0.85 · 10–3 CO2: 3.43 · 10–6 H2: 4.99 · 10–6 CH4: 3.06 · 10–6 CO: 3.01 · 10–6 N2: 3.02 · 10–6 thermal axial dispersion coefficient, Dl/W m–1 K–1 heat of adsorption of component i, Qi, J mol–1 Feed conditions: Temperature, T/K Pressure, p/Pa mole fraction, y/– volume flow rate, Q/m3 h–1 References Zeolite 0.452 CO2: 35965 H2: 9231 CH4: 20643 CO: 29733 N2: 20413 303 7 · 105 CO2: 0.17; H2:0.72; CH4:0.035; CO: 0.03; N2:0.03 12 porosity, å density rp/kg m–3 specific heat capacity cp,s/J kg–1 K–1 defaultradius rp /m axial dispersion coefficient, Dp/m2 s–1 Activated Carbon 0.566 842 709 1.17 · 10–3 CO2: 3.43 · 10–6 H2: 4.99 · 10–6 CH4: 3.06 · 10–6 CO: 3.01 · 10–6 N2: 3.02 · 10–6 CO2: 1.24 · 10–2 H2: 8.89 · 10–2 1. Ruthven, D. M., Farooq, S., Knabel, K. S., Pressure Swing Adsorption, VCH Publishers, New York, 1994. 2. Ruthven, D. M., Principles of Adsorption and Adsorption Processes, John Wiley, New York, 1984. 3. Yang, R. T., Gas Separation by Adsorption Processes. Butter- worths, Boston, 1987. 4. Yang, R. T., Doong, S. J., AIChE J. 31 (1985) 1829. 5. Doong, S. J., Yang, R. T., AIChE J. 33 (1987) 1045. 6. Cen, P., Yang, R. T., Ind. Eng. Chem. Fundam. 25 (1986) 758. 7. Yang, J., Han, S., Cho, C., Lee, C. H., Lee, H., Sep. Technol. 5 (1995) 239. 8. Yang, J., Lee, C. H., AIChE. J. 44 (1998) 1325. 9. Jee, J.-G., Kim, M.-B., Lee, C.-H., Ind. & Engg. Chem. Res. 40 (2001) 868. 10. Kumar, R., Ind. Eng. Chem. Res. 33 (1994) 1600. 11. Yang, J., Lee, C. H., Chang, J. W., Ind. Eng. Chem. Res. 36 (1997) 2789. 12. Batta, L. B., Island, G., US Patent 3564816, Selective ad- sorption process, 1971. 13. Yamaguchi, T., Kobayashi, Y., US Patent 5250088, Gas separation process, 1993. 14. Fuderer, A., Rudelstorfer, E., US Patent 3986849, Selec- tive adsorption process, 1976. 15. Golden, T. C., Weist Jr, E. L., Novosat, P. A., US Patent Application Publication 2006/0236862, Adsorbents for rapid cycle pressure swing adsorption processes, 2006. 16. Biegler, L. T., Jiang, L., Fox, V. G., Comp. & Chem. Engg. 29 (2004) 393. 17. Biegler, L. T., Jiang, L., Fox, V. G., AIChE J. 49 (2003) 1140. 18. Lopes, F. V. S., Ribeiro, A. M., Grande, C. A., Loureiro, J. M., Rodrigues, A. E., Transport and adsorption properties of second set of commercial available sorbent materials, Hy2Seps Report, 2007. 19. Englezos, P., Kalogerakis, N., Applied Parameter Estima- tion for Chemical Engineers, CRC Press (2000). 2 –1 D /r/s CO2: 1.87 · 10–4 H2: 9.23 · 10–2 CH:1.04·10–2 CO: 4.22 · 10–3 N2: 2.13 ·10–2 0 CO2: 2.1 H2: 1 CH4: 2 CO: 2.6 N2: 2.4 CO2: 4.525 H2: 9.954 CH4: 4.976 CO: 3.828 N2: 4.148 CH:3.96·10–3 cc44 overall heat transfer coefficient, U/W m–2 K–1 number of neighboring sites occupied by the adsorbate molecule in the multisite Langmuir isotherm, ai specific saturation adsorption capacity in the multisite Langmuir isotherm, qmax,i/mol kg–1 equilibrium constant in the multisite Langmuir isotherm, K/Pa i CO: 2.11 · 10–2 N2: 2.29 · 10–2 0 CO2: 3 H2: 1 CH4: 3.5 CO: 2.6 N2: 4 CO2: 7.855 H2: 23.565 CH4: 6.7329 CO: 9.0634 N2: 5.8913 CO : 2.125 · 10–11 CO : 11.11 · 10–11 2 –11 H2: 7.233 · 10 2 –11 H2: 50.76 · 10 CH : 7.904 · 10–11 CH : 35.65 · 10–11 4 –11 CO: 2.68 · 10 N2: 23.46 · 10–11 4 –11 CO: 3.937 · 10 N2: 30.83 · 10–11

PDF Image | Modeling and Simulation for Pressure Swing Adsorption System

PDF Search Title:

Modeling and Simulation for Pressure Swing Adsorption System

Original File Name Searched:

Cabeq-2010-04-03.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)