Numerical Research on the Pressure Swing Adsorption Process

PDF Publication Title:

Numerical Research on the Pressure Swing Adsorption Process ( numerical-research-pressure-swing-adsorption-process )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 017

Processes 2022, 10, 812 17 of 19 8. Rosner, F.; Chen, Q.; Rao, A.; Samuelsen, S.; Jayaraman, A.; Alptekin, G. Thermo-economic analyses of IGCC power plants employing warm gas CO2 separation technology. Energy 2019, 185, 541–553. [CrossRef] 9. Marcoberardino, G.D.; Vitali, D.; Spinelli, F.; Binotti, M.; Manzolini, G. Green hydrogen production from raw biogas: A techno- economic investigation of conventional processes using pressure swing adsorption unit. Processes 2018, 6, 19. [CrossRef] 10. Grande, C.A. Advances in pressure swing adsorption for gas separation. Int. Sch. Res. Not. 2012, 2012, 982934. [CrossRef] 11. Ben-Mansour, R.; Habib, M.A.; Bamidele, O.E.; Basha, M.; Qasem, N.A.A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations—A review. Appl. Energy 2016, 161, 225–255. [CrossRef] 12. Li, S.; Deng, S.; Zhao, L.; Zhao, R.; Lin, M.; Du, Y.; Lian, Y. Mathematical modeling and numerical investigation of carbon capture by adsorption: Literature review and case study. Appl. Energy 2018, 221, 437–449. [CrossRef] 13. Xiao, Y.; Qiu, S.; Zhao, Q.; Zhu, Y.; Godiya, C.B.; He, G. Numerical simulation of low-concentration CO2 adsorption on fixed bed using finite element analysis. Chin. J. Chem. Eng. 2020, 36, 47–56. [CrossRef] 14. Golubyatnikov, O.; Akulinin, E.; Dvoretsky, S.; Dvoretsky, D. To the problem of forming the equation system for pressure swing adsorption mathematical model. Chem. Prod. Process Model. 2021. [CrossRef] 15. Li, D.; Zhou, Y.; Shen, Y.; Sun, W.; Fu, Q.; Yan, H.; Zhang, D. Experiment and simulation for separating CO2/N2 by dual-reflux pressure swing adsorption process. Chem. Eng. J. 2016, 297, 315–324. [CrossRef] 16. Xing, R.; Shi, W.; Shen, Y.; Liu, B.; Zhang, D. Vacuum pressure swing adsorption system for N2/CO2 separation in consideration of unstable feed concentration. Adsorption 2019, 25, 1147–1158. [CrossRef] 17. Fu, Q.; Yan, H.; Shen, Y.; Qin, Y.; Zhang, D.; Zhou, Y. Optimal design and control of pressure swing adsorption process for N2/CH4 separation. J. Clean. Prod. 2018, 170, 704–714. [CrossRef] 18. Xu, M.; Wu, H.-C.; Lin, Y.S.; Deng, S. Simulation and optimization of pressure swing adsorption process for high-temperature air separation by perovskite sorbents. Chem. Eng. J. 2018, 354, 62–74. [CrossRef] 19. Chen, Q.; Rosner, F.; Rao, A.; Samuelsen, S.; Jayaraman, A.; Alptekin, G. Simulation of elevated temperature solid sorbent CO2 capture for pre-combustion applications using computational fluid dynamics. Appl. Energy 2019, 237, 314–325. [CrossRef] 20. Haghpanah, R.; Majumder, A.; Nilam, R.; Rajendran, A.; Farooq, S.; Karimi, I.A.; Amanullah, M. Multiobjective optimization of a four-step adsorption process for postcombustion CO2 capture via finite volume simulation. Ind. Eng. Chem. Res. 2013, 52, 4249–4265. [CrossRef] 21. Anna, H.R.S.; Barreto, A.G., Jr.; Tavares, F.W.; de Souza, M.B., Jr. Machine learning model and optimization of a PSA unit for methane-nitrogen separation. Comput. Chem. Eng. 2017, 104, 377–391. [CrossRef] 22. Rashki, M.; Azarkish, H.; Rostamian, M.; Bahrpeyma, A. Classification correction of polynomial response surface methods for accurate reliability estimation. Struct. Saf. 2019, 81, 101869. [CrossRef] 23. Gaspar, B.; Teixeira, A.P.; Soares, C.G. Assessment of the efficiency of Kriging surrogate models for structural reliability analysis. Probabilistic Eng. Mech. 2014, 37, 24–34. [CrossRef] 24. Zheng, X.G.; Yao, H.; Huang, Y. Orthogonal numerical simulation on multi-factor design for rapid pressure swing adsorption. Adsorption 2017, 23, 685–697. [CrossRef] 25. Beck, J.; Friedrich, D.; Brandani, S.; Fraga, E.S. Multi-objective optimisation using surrogate models for the design of VPSA systems. Comput. Chem. Eng. 2015, 82, 318–329. [CrossRef] 26. Towne, A.; Schmidt, O.T.; Colonius, T. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 2018, 847, 821–867. [CrossRef] 27. Zhang, D.; Lin, J.; Peng, Q.; Wang, D.; Yang, T.; Sorooshian, S.; Liu, X.; Zhuang, J. Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm. J. Hydrol. 2018, 565, 720–736. [CrossRef] 28. Ye, F.; Ma, S.; Tong, L.; Xiao, J.; Bénard, P.; Chahine, R. Artificial neural network based optimization for hydrogen purification performance of pressure swing adsorption. Int. J. Hydrogen Energy 2019, 44, 5334–5344. [CrossRef] 29. Yu, X.; Shen, Y.; Guan, Z.; Zhang, D.; Tang, Z.; Li, W. Multi-objective optimization of ANN-based PSA model for hydrogen purification from steam-methane reforming gas. Int. J. Hydrogen Energy 2021, 46, 11740–11755. [CrossRef] 30. Xiao, J.; Li, C.; Fang, L.; Böwer, P.; Wark, M.; Bénard, P.; Chahine, R. Machine learning—Based optimization for hydrogen purification performance of layered bed pressure swing adsorption. Int. J. Energy Res. 2020, 44, 4475–4492. [CrossRef] 31. Xiao, J.; Mei, A.; Tao, W.; Ma, S.; Bénard, P.; Chahine, R. Hydrogen Purification Performance Optimization of Vacuum Pressure Swing Adsorption on Different Activated Carbons. Energies 2021, 14, 2450. [CrossRef] 32. Akulinin, E.; Golubyatnikov, O.; Dvoretsky, D.; Dvoretsky, S. Optimization and analysis of pressure swing adsorption process for oxygen production from air under uncertainty. Chem. Ind. Chem. Eng. Q. 2020, 26, 89–104. [CrossRef] 33. Nogueira, I.B.R.; Martins, M.A.F.; Regufe, M.J.; Rodrigues, A.E.; Loureiro, J.M.; Ribeiro, A.M. Big data-based optimization of a pressure swing adsorption unit for syngas purification: On mapping uncertainties from a metaheuristic technique. Ind. Eng. Chem. Res. 2020, 59, 14037–14047. [CrossRef] 34. Hao, Z.; Caspari, A.; Schweidtmann, A.M.; Vaupel, Y.; Lapkin, A.A.; Mhamdi, A. Efficient hybrid multiobjective optimization of pressure swing adsorption. Chem. Eng. J. 2021, 423, 130248. [CrossRef] 35. Martins, M.A.F.; Rodrigues, A.E.; Loureiro, J.M.; Ribeiro, A.M.; Nogueira, I.B.R. Artificial Intelligence-oriented economic non- linear model predictive control applied to a pressure swing adsorption unit: Syngas purification as a case study. Sep. Purif. Technol. 2021, 276, 119333. [CrossRef]

PDF Image | Numerical Research on the Pressure Swing Adsorption Process

PDF Search Title:

Numerical Research on the Pressure Swing Adsorption Process

Original File Name Searched:

processes-10-00812-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)