PDF Publication Title:
Text from PDF Page: 053
Cation Exchange. Since the sodium form of the zeolite exchanges more readily with most cations in consideration, all zeolites were first ion-exchanged with a solution of sodium chloride in order to convert to the Na+ form. A dilute NaOH solution was used to keep the NaCl solution at pH 9. This helps to prevent hydrolysis and breakdown of the zeolite crystal structure during the ion-exchange process. The resultant Na+-zeolite was then used as the starting material for all other syntheses. Preparation of Li-Zeolites. The lithium zeolites were prepared by 5 consecutive static ion-exchanges using a 6.3-fold excess (over that necessary for full ion-exchange) of a 2.2 M solution of LiCl. This was done in a 0.01 M solution of LiOH at a pH 9. The lithium ion-exchange solution was heated to a mild boil and then allowed to cool and settle. The solution was decanted, a fresh 6.3X LiCl solution was added, and the procedure was repeated for a total of 5 exchanges. After the final ion-exchange, the material was vacuum filtered and washed with copious amounts of deionized water until no free ions were present in the filter water (i.e., no AgCl precipitation upon treatment with Ag+). The resulting lithium exchanged zeolites were dried overnight at 100 C in a conventional oven before being dehydrated in vacuo prior to measurement of adsorption isotherms. Preparation of Ag-Zeolites. The silver zeolites were prepared by 2 consecutive ion-exchanges using a 0.05 M solution of AgNO3. Each silver solution contained a cation content which was double that required for 100% exchange. The silver ion- exchange solution was heated to a mild boil and immediately allowed to cool and settle. As with the lithium ion-exchange, the solution was decanted, fresh AgNO3 solution was added, and the procedure was repeated for a total of 2 exchanges. After the second ion- 53PDF Image | PSA USING SUPERIOR ADSORBENTS
PDF Search Title:
PSA USING SUPERIOR ADSORBENTSOriginal File Name Searched:
789503.pdfDIY PDF Search: Google It | Yahoo | Bing
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
Heat Pumps CO2 ORC Heat Pump System Platform More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |