logo

Rapid Cycling Thermal Swing Adsorption Apparatus

PDF Publication Title:

Rapid Cycling Thermal Swing Adsorption Apparatus ( rapid-cycling-thermal-swing-adsorption-apparatus )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article (8) Adeniyi, K. I.; Bernard, F.; Deering, C. E.; Marriott, R. A. Water content of liquid H2S in equilibrium with the hydrate phase. Fluid Phase Equilib. 2021, 529, No. 112865. (9) Baker, R. W.; Lokhandwala, K. Natural Gas Processing with Membranes: An Overview. Ind. Eng. Chem. Res. 2008, 47, 2109−2121. (10) Campbell, J. M.; Maddox, R. N. Gas Conditioning and Processing: Gas Treating and Sulfur Recovery, 4th ed.; Campbell Petroleum Series: Norman, Okla, 1998. (11) Wynnyk, K. G.; Hojjati, B.; Pirzadeh, P.; Marriott, R. A. High- Pressure Sour Gas Adsorption on Zeolite 4A. Adsorption 2017, 23, 149−162. (12) Wynnyk, K. G.; Hojjati, B.; Marriott, R. A. High-Pressure Sour Gas and Water Adsorption on Zeolite 13X. Ind. Eng. Chem. Res. 2018, 57, 15357−15365. (13) Wynnyk, K. G.; Hojjati, B.; Marriott, R. A. Sour Gas and Water Adsorption on Common High-Pressure Desiccant Materials: Zeolite 3A, Zeolite 4A, and Silica Gel. J. Chem. Eng. Data 2019, 64, 3156− 3163. (14) Gas Processors Supplier’s Assoc. (GPSA). Engineering Data Book, Tulsa, OK,1987. (15) Herold, R. H.; Mokhatab, S. Optimal design and operation of molecular sieves for gas dehydration-Part 1. Hydrocarbon Process. 2017, 96, 25−30. (16) Herold, R. H.; Mokhatab, S. Optimal design and operation of molecular sieves for gas dehydration-Part 2. Hydrocarbon Process. 2017, 96, 33−36. (17) Ruthven, D. M. Principles of Adsorption and Adsorption Processes; Wiley: New York,1984. (18) Li, C.; Jia, W.; Wu, X. Experimental Failure-Mechanism Analysis of 4A Zeolites Used for Natural-Gas Drying. Chem. Technol. Fuels Oils 2015, 51, 245−251. (19) Santiago, R. G.; dos Santos, B. F.; Lima, I. G.; Moura, K. O.; Melo, D. C.; Grava, W. M.; Bastos-Neto, M.; de Lucena, S. M. P.; de Azevedo, D. C. S. Investigation of premature aging of zeolites used in the drying of gas streams. Chem. Eng. Commun. 2019, 206, 1367− 1374. (20) Belding, W. A.; Delmas, M. P. F.; Holeman, W. D. Desiccant Aging and Its Effects on Desiccant Cooling System Performance. Appl. Therm. Eng. 1996, 16, 447−459. (21) Masala, A.; Vitillo, J. G.; Mondino, G.; Grande, C. A.; Blom, R.; Manzoli, M.; Marshall, M.; Bordiga, S. CO 2 Capture in Dry and Wet Conditions in UTSA-16 Metal−Organic Framework. ACS Appl. Mater. Interfaces 2017, 9, 455−463. (22) De Marco, L. M.; Trierweiler, J. O.; Farenzena, M. Determination of Remaining Useful Life in Cyclic Processes. Ind. Eng. Chem. Res. 2019, 58, 22048−22063. (23) Gebraeel, N. Z.; Lawley, M. A.; Li, R.; Ryan, J. K. Residual-Life Distributions from Component Degradation Signals: A Bayesian Approach. IIE Transactions 2005, 37, 543−557. (24) Si, X.-S.; Wang, W.; Chen, M.-Y.; Hu, C.-H.; Zhou, D.-H. A Degradation Path-Dependent Approach for Remaining Useful Life Estimation with an Exact and Closed-Form Solution. Eur. J. Oper. Res. 2013, 226, 53−66. (25) Tang, S.; Yu, C.; Wang, X.; Guo, X.; Si, X. Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error. Energies 2014, 7, 520−547. (26) Van Der Aa, E. Finite Element Modelling of Temperature Profiles, Distortionsand Residual Stresses Due to TIG Welding. Master Thesis, TU Delft, 2002. (27) Majchrzak-Kucęba, I. A Simple Thermogravimetric Method for the Evaluation of the Degree of Fly Ash Conversion into Zeolite Material. J. Porous Mater. 2013, 20, 407−415. (28) Musyoka, N. M.; Petrik, L. F.; Hums, E.; Kuhnt, A.; Schwieger, W. Thermal Stability Studies of Zeolites A and X Synthesized from South African Coal Fly Ash. Res. Chem. Intermed. 2015, 41, 575−582. (29) Iqbal, A.; Sattar, H.; Haider, R.; Munir, S. Synthesis and Characterization of Pure Phase Zeolite 4A from Coal Fly Ash. J. Cleaner Prod. 2019, 219, 258−267. (30) Buhl, J.-Ch.; Gerstmann, M.; Lutz, W.; Ritzmann, A. Hydrothermal Stability of the Novel Zeolite Type LSX in Comparison to the Traditional 13X Modification. Z. Anorg. Allg. Chem. 2004, 630, 604−608. (31) Fischer, F.; Lutz, W.; Buhl, J.-C.; Laevemann, E. Insights into the Hydrothermal Stability of Zeolite 13X. Microporous Mesoporous Mater. 2018, 262, 258−268. 7494 https://doi.org/10.1021/acs.iecr.1c00469 Ind. Eng. Chem. Res. 2021, 60, 7487−7494

PDF Image | Rapid Cycling Thermal Swing Adsorption Apparatus

rapid-cycling-thermal-swing-adsorption-apparatus-008

PDF Search Title:

Rapid Cycling Thermal Swing Adsorption Apparatus

Original File Name Searched:

acs-iecr-1c00469.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP