logo

swing adsorption processes for CO2 capture in selected MOFs and zeolites

PDF Publication Title:

swing adsorption processes for CO2 capture in selected MOFs and zeolites ( swing-adsorption-processes-co2-capture-selected-mofs-and-zeo )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 060

87 Lin, L.-C.; Berger, A. H.; Martin, R. L.; Kim, J.; Swisher, J. A.; Jariwala, K.; Rycroft, C. H.; Bhown, A. S.; Deem, M. W.; Haranczyk, M.; Smit, B. In silico screening of carbon-capture materials. Nature Materials, 2012, 11: 633-641. 88 Vujic, B.; Lyubartsev, A. P. Computationally based analysis of the energy efficiency of a CO2 capture process. Chem. Eng. Sci., 2017, 174: 174–188. 89 Wilcox, J. Carbon Capture. Ed. Springer. New York, 2012. ISBN: 1461422140. 90 Wang, Y.; LeVan, M. D. Adsorption Equilibrium of Carbon Dioxide and Water Vapor on Zeolites 5A and 13X and Silica Gel: Pure Components. J. Chem. Eng. Data. 2009, 54: 2839–2844. 91 DeCoste, J. B.; Peterson, G. W.; Schindler, B. J.; Killops, K. L.; Browe, M. A.; Mahle, J. J. The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. J. Mater. Chem. A, 2013, 1: 11922-11932. 92 Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 2009, 120: 325-330. 93 Liang, Z.; Marshall, M.; Chaffee, A. L. CO2 Adsorption-Based Separation by Metal Organic Framework (Cu-BTC) versus Zeolite (13X). Energy & Fuels. 2009, 23: 2785–2789. 94 García-Pérez, E.; Gascón, J.; Morales-Flórez, V. Castillo, J. M.; Kaptejin, F.; Calero, S. Identification of Adsorption Sites in Cu-BTC by Experimentation and Molecular Simulation. Langmuir, 2009, 25(3): 1725-1731 95 Peng, X.; Lin, L-C.; Sun, W.; Smit, B. Water Adsorption in Metal–Organic Frameworks with Open- Metal Sites. AIChE J. 2015, 61(2): 677-687. 96 Huang, L.; Joshi, K. L.; van Duin, A. C.; Bandosz, T. J.; Gubbins, K. E. ReaxFF molecular dynamics simulation of thermal stability of a Cu3(BTC)2 metal–organic framework. Phys. Chem. Chem. Phys., 2012, 14: 11327-11332. 97 Canivet, J.; Fateeva, A.; Guo, Y.; Coasnec, B.; Farrusseng, D. Water adsorption in MOFs: fundamentals and applications. Chem. Soc. Rev., 2014, 43: 5594—5617. 98 Burtch, N. C.; Jasuja, H.; Walton. K. S. Water Stability and Adsorption in Metal−Organic Frameworks. Chem. Rev. 2014, 114: 10575−10612. 99 Low, J. J.; Benin, A. I.; Jakubczak, P.; Abrahamian, J. F.; Faheem, S. A.; Willis, R. R. Virtual High Throughput Screening Confirmed Experimentally: Porous Coordination Polymer Hydration. J. Am. Chem. Soc. 2009, 9(131): 15834-15842. 100 Al-Janabi, N.; Hill, P.; Torrente-Murciano, L.; Garforth, A.; Gorgojo, P.; Siperstein, F.; Fan, X. Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chem. Eng. J., 2015, 281: 669–677. 101 Palomino, M.; Corma, A.; Rey, F.; Valencia, S. New insights on CO2-methane separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFs. Langmuir, 2010, 26: 1910–1917. 102 Grajciar, L.; Wiersum, A.; Llewellyn, P.; Cang, J.-S.; Nachtigall, P. Understanding CO2 Adsorption in CuBTC MOF: Comparing Combined DFT–ab Initio Calculations with Microcalorimetry Experiments. J. Phys. Chem. C. 2011, 115: 17925–17933. 103 Joos, L.; Swisher, J.A.; Smit, B. Molecular Simulation Study of the Competitive Adsorption of H2O and CO2 in Zeolite 13X. Langmuir. 2013, 29: 15936−15942. 104 Myers, A.L.; Prausnitz, J.M. Themodynamics of Mixed Gas Adsorption. AIChE J. 1965, 11: 121-127. 105 Krishna, R.; van Baten, J. M. Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking. Chem. Eng. J., 2008, 140: 614– 620. 106 Granite, E. J.; Pennline, H. W.; Photochemical removal of mercury from flue gas, Ind. Eng. Chem. Res. 2002, 41: 5470-5476. 107 Peng X, Cao D. Computational screening of porous carbons, zeolites, and metal organic frameworks for desulfurization and decarburization of biogas, natural gas, and flue gas. AIChE J. 2013, 59: 2928– 2942. 108 D’alessandro, D.; Smit, B.; Long, J. R. Carbon Dioxide Capture: Prospects for New Materials. Angew. Chem., Int. Ed. 2010, 49: 6058− 6082. 60

PDF Image | swing adsorption processes for CO2 capture in selected MOFs and zeolites

swing-adsorption-processes-co2-capture-selected-mofs-and-zeo-060

PDF Search Title:

swing adsorption processes for CO2 capture in selected MOFs and zeolites

Original File Name Searched:

679077.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP