PDF Publication Title:
Text from PDF Page: 061
109 Kumar, R. Pressure swing adsorption process: performance optimum and adsorbent selection. Ind. Eng. Chem. Res. 1994, 33: 1600-1605. 110 Ho, M. T.; Allinson, G. W.; Wiley, D. E. Reducing the cost of CO2 capture from flue gases using pressure swing adsorption, Ind. Eng. Chem. Res. 2008, 47: 4883-4890. 111 Zhao, R.; Zhao, L.; Deng, S.; Song, C.; He, J.; Shao, Y.; Li, S. A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle. Energy, 2017, 1-15. DOI: 10.1016/j.energy.2017.01.158. 112 Choi, W. K.; Kwon, T. I.; Yeo, Y. K.; Lee, H.; Na, B. K.; Song, H. K. Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery, Korean J. Chem. Eng. 2003, 20: 617-623. 113 Anantharaman, R.; Bolland, O.; Booth, N.; van Dorst, E.; Ekstrom, C.; Sanchez Fernandes, E.; Franco, F.; Macchi, E.; Manzolini, G.; Nikolic, D.; Pfeffer, A.; Prins, M. Rezvani S.; Robinson, L. European best practice guidelines for assessment of CO2 capture technologies. Politecnico di Milano and Alstom UK technical report, 2011. 114 Zhang, J.; Webley, P.; Xiao, P. Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas. Energy Conversion and Management, 2008, 49(2): 346-356. 115 Nikolaidis, G. N.; Kikkinides, E. S.; Georgiadis, M. C. An Integrated Two-Stage P/VSA Process for Postcombustion CO2 Capture Using Combinations of Adsorbents Zeolite 13X and MgMOF-74. Ind. Eng. Chem. Res. 2017, 56(4): 974−988. 116 Ishibashi, M.; Ota, H.; Akutsu, N.; Umeda, S.; Tajika, M.; Izumi, J.; Yasutake, A.; Kabata, T.; Kageyama, Y. Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method. Energy Convers. Manage., 1996, 37: 929–933. 117 Hefti, M.; Joss, L.; Bjelobrk, Z.; Mazzottia, M. On the potential of phase-change adsorbents for CO2 capture by temperature swing adsorption. Faraday Discuss., 2016, 192: 153-179. 118 Liu, Z.; Grande, C. A.; Li, P.; Yu, J.; Rodrigues, A. E. Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas. Sep. Purif. Technol., 2011, 81: 307–317. 119 Leperi, K. T.; Snurr, R. Q.; You, F. Optimization of Two-Stage Pressure/Vacuum Swing Adsorption with Variable Dehydration Level for Postcombustion Carbon Capture. Ind. Eng. Chem. Res. 2016, 55: 3338−3350. 120 Tlili, N.; Grévillot, G.; Vallières. C. Carbon dioxide capture and recovery by means of TSA and/or VSA. Int. J. Greenh. Gas Control, 2009, 3(5): 519- 527. 121 Plaza, M. G.; Durán, I.; Rubiera, F.; Pevida, C. Adsorption-based process modeling for post- adsorbent materials on energy efficiency of vacuum-pressure swing adsorption cycle for CO2 capture. Appl. Therm. Eng., 2018, 128: 818–829. 123 Abu-Zahra, M. R. M.; Niederer, J. P. M.; Feron, P. H. M.; Versteeg, G. F. CO2 capture from power plants: Part II. A parametric study of the economical performance based on mono-ethanolamine. Int. J. Greenh. Gas Control, 2007, 1(2): 135–142. 124 Raynal, L.; Alix, P.; Bouillon, P.-A.; Gomez, A.; Le Febvre De Nailly, M.; Jacquin, M.; Kittel, J.; Di Lella, A.; Mougin, P; Trapy, J. The DMXTM process: An original solution for lowering the cost of post- combustion carbon capture. Energy Procedia, 2011, 4: 779–786. 125 Singh, P.; Van Swaaij, W. P. M.; Brilman, D. W. F. Energy Efficient Solvents for CO2 Absorption from Flue Gas: Vapor Liquid Equilibrium and Pilot Plant Study. Energy Procedia, 2013, 37: 2021–2046. 61 combustion CO2 capture. Energy procedia, 2017, 114: 2353-2361. 122 Zhao, R.; Deng, S.; Wang, S.; Zhao, L.; Zhang, Y.; Liu, B.; Li, H.; Yu, Z. Thermodynamic research ofPDF Image | swing adsorption processes for CO2 capture in selected MOFs and zeolites
PDF Search Title:
swing adsorption processes for CO2 capture in selected MOFs and zeolitesOriginal File Name Searched:
679077.pdfDIY PDF Search: Google It | Yahoo | Bing
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
Heat Pumps CO2 ORC Heat Pump System Platform More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)