
PDF Publication Title:
Text from PDF Page: 243
and Purification Technology Vol. 81(3) pp. 307-317 DOI: http://dx.doi.org/10.1016/j.seppur.2011.07.037. Lively, R. P., R. R. Chance, B. T. Kelley, H. W. Deckman, J. H. Drese, C. W. Jones and W. J. Koros (2009), "Hollow Fiber Adsorbents for CO2 Removal from Flue Gas," Industrial & Engineering Chemistry Research Vol. 48(15) pp. 7314-7324 DOI: 10.1021/ie9005244. Lively, R. P., R. R. Chance and W. J. Koros (2010), "Enabling Low-Cost CO2 Capture via Heat Integration," Industrial and Engineering Chemistry Research Vol. 49(16) pp. 7550-7562 DOI: 10.1021/ie100806g. Lively, R. P., R. R. Chance, J. A. Mysona, V. P. Babu, H. W. Deckman, D. P. Leta, H. Thomann and W. J. Koros (2012), "CO2 sorption and desorption performance of thermally cycled hollow fiber sorbents," International Journal of Greenhouse Gas Control Vol. 10 pp. 285-294 DOI: http://dx.doi.org/10.1016/j.ijggc.2012.06.019. Lively, R. P., D. P. Leta, B. A. DeRites, R. R. Chance and W. J. Koros (2011), "Hollow fiber adsorbents for CO2 capture: Kinetic sorption performance," Chemical Engineering Journal Vol. 171(3) pp. 801-810 DOI: http://dx.doi.org/10.1016/j.cej.2011.01.004. Luis, P. (2016), "Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives," Desalination Vol. 380 pp. 93-99 DOI: http://dx.doi.org/10.1016/j.desal.2015.08.004. Mark, J. E. (1999). Polymer Data Handbook, Oxford University Press Inc. . Mérel, J., M. Clausse and F. Meunier (2006), "Carbon dioxide capture by indirect thermal swing adsorption using 13X zeolite," Environmental Progress Vol. 25(4) pp. 327- 333 DOI: 10.1002/ep.10166. Moate, J. R. and M. D. LeVan (2010), "Temperature swing adsorption compression: Effects of nonuniform heating on bed efficiency," Applied Thermal Engineering Vol. 30(6–7) pp. 658-663 DOI: http://dx.doi.org/10.1016/j.applthermaleng.2009.11.013. Moore, B. K. (2012). Gas-Liquid Flows in Adsorbent Microchannels. Mechanical Engineering. Atlanta, Georgia Institute of Technology Vol. Master of Science p. 202. Moore, B. K., D. G. Pahinkar and S. Garimella (2016), "Experimental and Analytical Investigation of Displacement Flows in Microchannels," International Journal of Multiphase Flows Vol. In Review Morishige, K. (2011), "Adsorption and Separation of CO2/CH4 on Amorphous Silica Molecular Sieve," The Journal of Physical Chemistry C Vol. 115(19) pp. 9713- 9718 DOI: 10.1021/jp202572w. Mulgundmath, V. P., F. H. Tezel, T. Saatcioglu and T. C. Golden (2012), "Adsorption and separation of CO2/N2 and CO2/CH4 by 13X zeolite," The Canadian Journal of Chemical Engineering Vol. 90(3) pp. 730-738 DOI: 10.1002/cjce.20592. Olajossy, A., A. Gawdzik, Z. Budner and J. Dula (2003), "Methane Separation from Coal Mine Methane Gas by Vacuum Pressure Swing Adsorption," Chemical Engineering Research and Design Vol. 81(4) pp. 474-482 DOI: http://dx.doi.org/10.1205/026387603765173736. Pahinkar, D. G., S. Garimella and T. R. Robbins (2015), "Feasibility of Using Adsorbent- Coated Microchannels for Pressure Swing Adsorption: Parametric Studies on 216PDF Image | TEMPERATURE SWING ADSORPTION PROCESSES FOR GAS SEPARATION
PDF Search Title:
TEMPERATURE SWING ADSORPTION PROCESSES FOR GAS SEPARATIONOriginal File Name Searched:
PAHINKAR-DISSERTATION-2016.pdfDIY PDF Search: Google It | Yahoo | Bing
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
Heat Pumps CO2 ORC Heat Pump System Platform More Info
| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |