Humidification Dehumidification Solar Desalination System

PDF Publication Title:

Humidification Dehumidification Solar Desalination System ( humidification-dehumidification-solar-desalination-system )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 004

Mathematics 2021, 9, 33 4 of 31 and building costs, were considered. A multi-location (six locations in Saudi Arabia) analysis has concluded that the highest annual output is noted for Sharurah and lowest for Dhahran. Similarly, Jamil et al. [34] also reported the thermoeconomics of desalination system and concluded that the levelized cost of water production can be variable for various type of desalination system, for example, the production cost of reverse osmo- sis, mechanical vapour compression, multi-effect evaporation/desalination, multistage flash, and thermal vapour compression are 0.9 ± 0.3$/m3, 1.0 ± 0.5$/m3, 1.5 ± 0.5$/m3, 2.0 ± 0.5$/m3, and 2.7 ± 0.8$/m3, respectively. Likewise, Jamil et al. [34] presented that the hybrid desalination plants like energy recovery devices along with the reverse osmosis can have the lowest water production cost at 0.7 ± 0.2$/m3, leading us to the conclusion that further system improvement is needed to cope with the uncertain water security situation in the future. One of the improvement can be related with the internal heat recovery mechanisms within the same desalination system and Xu et al. [35] has emphasized that the ongoing research on HDH desalination system has demonstrated that the internal heat recovery is a significant and potential method for improving the system performance and reducing the freshwater cost. Strictly speaking, conventionally, the HDH systems are driven by a low-grade heat source in the form of a waste heat recovery from another energy system. However, in this work, the authors are emphasizing the waste heat recovery option within the processing circuit of the desalination plant. Although, in literature, some research is available on different types of waste heat recovery procedures either with integration with another external energy resource or from an internal resource. However, this area needs more research to fully understand the potential and benefits of internal waste heat recovery. Therefore, in this work, an opportunity of waste heat recovery is identified in HDH desalination and the system behaviour is reported with and without this waste heat recovery. The waste heat is recovered from the condenser coil by supplying it back to the hot water tank. Although, a variety of research is available on different strategies and methodologies of waste heat recovery within the system and/or integration with other energy systems; nevertheless, no research is focused on the practical thermoeconomic benefits of the HDH desalination plant with waste heat recovery from the condenser coil. The summary of various waste heat recovery in desalination plants is reported in Table 1 along with the identified gaps with the literature, thus highlighting the novelty of the work. Additionally, the waste heat recovery from the system would influence the system performance. However, it would also be a subject to the local conditions, either in terms of climate to influence the thermal indicators or in terms of economic conditions to influence the levelized cost of water production. Therefore, it is very important to realize the analysis of the desalination plant considering the local climatic and economic conditions. This aspect is still missing in the literature and needs more research. Another pivot point of the analysis is that a single-day demonstration of the waste heat recovery in the desalination plant might not be enough (see Table 1 as most of the analysis is based on a selected duration), because the solar integration makes the performance transient. Therefore, a yearly analysis demonstrating the pros and cons of the internal waste heat recovery has quite a significance. Therefore, in conclusion from this discussion, and based on the identified literature gaps, there is still a need to strengthen the research area of the yearly demonstration of waste heat recovery considering the local climatic and economic conditions to fully understand the gain of the system. A checklist is included in Figure 1, highlighting various literature gaps in the literature along with the novelty of the work.

PDF Image | Humidification Dehumidification Solar Desalination System

PDF Search Title:

Humidification Dehumidification Solar Desalination System

Original File Name Searched:

mathematics-09-00033.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)